Structure and Stability of Lithium Superoxide Clusters and Relevance to Li-O2 Batteries

被引:74
作者
Das, Ujjal [1 ]
Lau, Kah Chun [1 ]
Redfern, Paul C. [2 ]
Curtiss, Larry A. [1 ,3 ]
机构
[1] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA
[2] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA
[3] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA
关键词
MOLECULAR-ORBITAL METHODS; OXYGEN REDUCTION; AIR BATTERIES; HIGH-CAPACITY; BASIS-SETS; CATALYSTS; LI2O2; DISPROPORTIONATION; MECHANISM; KINETICS;
D O I
10.1021/jz500084e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The discharge mechanism of a Li-O-2 battery involves lithium superoxide (LiO2) radicals. In this Letter, we have performed high-level quantum chemical calculations (G4MP2) to investigate the structure and stability of LiO2 clusters. The clusters have planar ring-shaped structures, high spins, and are thermodynamically more stable than LiO2 dimer. The computed energy barrier for disproportionation of the larger clusters is also significantly higher than the corresponding barrier in the LiO2 dimer (1.0 eV vs 0.5 eV). This means that disproportionation rate should be much slower if the reaction involves LiO2 clusters other than the dimer. As a result, the clusters may survive long enough to be incorporated into the growing discharge product. These results are discussed in terms of recent experimental studies of the electronic structure and morphology of the discharge products in Li-air batteries.
引用
收藏
页码:813 / 819
页数:7
相关论文
共 48 条
[31]   Catalytic Activity Trends of Oxygen Reduction Reaction for Nonaqueous Li-Air Batteries [J].
Lu, Yi-Chun ;
Gasteiger, Hubert A. ;
Shao-Horn, Yang .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (47) :19048-19051
[32]   Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions [J].
Marenich, Aleksandr V. ;
Cramer, Christopher J. ;
Truhlar, Donald G. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2009, 113 (18) :6378-6396
[33]   Solvents' Critical Role in Nonaqueous Lithium-Oxygen Battery Electrochemistry [J].
McCloskey, B. D. ;
Bethune, D. S. ;
Shelby, R. M. ;
Girishkumar, G. ;
Luntz, A. C. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2011, 2 (10) :1161-1166
[34]   On the Efficacy of Electrocatalysis in Nonaqueous Li-O2 Batteries [J].
McCloskey, Bryan D. ;
Scheffler, Rouven ;
Speidel, Angela ;
Bethune, Donald S. ;
Shelby, Robert M. ;
Luntz, A. C. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (45) :18038-18041
[35]   ELECTROSTATIC INTERACTION OF A SOLUTE WITH A CONTINUUM - A DIRECT UTILIZATION OF ABINITIO MOLECULAR POTENTIALS FOR THE PREVISION OF SOLVENT EFFECTS [J].
MIERTUS, S ;
SCROCCO, E ;
TOMASI, J .
CHEMICAL PHYSICS, 1981, 55 (01) :117-129
[36]   Oxide Catalysts for Rechargeable High-Capacity Li-O2 Batteries [J].
Oh, Si Hyoung ;
Nazar, Linda F. .
ADVANCED ENERGY MATERIALS, 2012, 2 (07) :903-910
[37]   Ab Initio Calculations for Decomposition Mechanism of CH3O(CH2CH2O)NCH3 (N=1-4) by the Attack of O2- Anion [J].
Okamoto, Yasuharu ;
Kubo, Yoshimi .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (31) :15940-15946
[38]   Oxygen Reactions in a Non-Aqueous Li+ Electrolyte [J].
Peng, Zhangquan ;
Freunberger, Stefan A. ;
Hardwick, Laurence J. ;
Chen, Yuhui ;
Giordani, Vincent ;
Barde, Fanny ;
Novak, Petr ;
Graham, Duncan ;
Tarascon, Jean-Marie ;
Bruce, Peter G. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (28) :6351-6355
[39]  
Perdew JP, 1997, PHYS REV LETT, V78, P1396, DOI 10.1103/PhysRevLett.77.3865
[40]   Charge transport in lithium peroxide: relevance for rechargeable metal-air batteries [J].
Radin, Maxwell D. ;
Siegel, Donald J. .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (08) :2370-2379