Structure and Stability of Lithium Superoxide Clusters and Relevance to Li-O2 Batteries

被引:75
作者
Das, Ujjal [1 ]
Lau, Kah Chun [1 ]
Redfern, Paul C. [2 ]
Curtiss, Larry A. [1 ,3 ]
机构
[1] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA
[2] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA
[3] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2014年 / 5卷 / 05期
关键词
MOLECULAR-ORBITAL METHODS; OXYGEN REDUCTION; AIR BATTERIES; HIGH-CAPACITY; BASIS-SETS; CATALYSTS; LI2O2; DISPROPORTIONATION; MECHANISM; KINETICS;
D O I
10.1021/jz500084e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The discharge mechanism of a Li-O-2 battery involves lithium superoxide (LiO2) radicals. In this Letter, we have performed high-level quantum chemical calculations (G4MP2) to investigate the structure and stability of LiO2 clusters. The clusters have planar ring-shaped structures, high spins, and are thermodynamically more stable than LiO2 dimer. The computed energy barrier for disproportionation of the larger clusters is also significantly higher than the corresponding barrier in the LiO2 dimer (1.0 eV vs 0.5 eV). This means that disproportionation rate should be much slower if the reaction involves LiO2 clusters other than the dimer. As a result, the clusters may survive long enough to be incorporated into the growing discharge product. These results are discussed in terms of recent experimental studies of the electronic structure and morphology of the discharge products in Li-air batteries.
引用
收藏
页码:813 / 819
页数:7
相关论文
共 48 条
  • [31] Catalytic Activity Trends of Oxygen Reduction Reaction for Nonaqueous Li-Air Batteries
    Lu, Yi-Chun
    Gasteiger, Hubert A.
    Shao-Horn, Yang
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (47) : 19048 - 19051
  • [32] Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions
    Marenich, Aleksandr V.
    Cramer, Christopher J.
    Truhlar, Donald G.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2009, 113 (18) : 6378 - 6396
  • [33] Solvents' Critical Role in Nonaqueous Lithium-Oxygen Battery Electrochemistry
    McCloskey, B. D.
    Bethune, D. S.
    Shelby, R. M.
    Girishkumar, G.
    Luntz, A. C.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2011, 2 (10): : 1161 - 1166
  • [34] On the Efficacy of Electrocatalysis in Nonaqueous Li-O2 Batteries
    McCloskey, Bryan D.
    Scheffler, Rouven
    Speidel, Angela
    Bethune, Donald S.
    Shelby, Robert M.
    Luntz, A. C.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (45) : 18038 - 18041
  • [35] ELECTROSTATIC INTERACTION OF A SOLUTE WITH A CONTINUUM - A DIRECT UTILIZATION OF ABINITIO MOLECULAR POTENTIALS FOR THE PREVISION OF SOLVENT EFFECTS
    MIERTUS, S
    SCROCCO, E
    TOMASI, J
    [J]. CHEMICAL PHYSICS, 1981, 55 (01) : 117 - 129
  • [36] Oxide Catalysts for Rechargeable High-Capacity Li-O2 Batteries
    Oh, Si Hyoung
    Nazar, Linda F.
    [J]. ADVANCED ENERGY MATERIALS, 2012, 2 (07) : 903 - 910
  • [37] Ab Initio Calculations for Decomposition Mechanism of CH3O(CH2CH2O)NCH3 (N=1-4) by the Attack of O2- Anion
    Okamoto, Yasuharu
    Kubo, Yoshimi
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (31) : 15940 - 15946
  • [38] Oxygen Reactions in a Non-Aqueous Li+ Electrolyte
    Peng, Zhangquan
    Freunberger, Stefan A.
    Hardwick, Laurence J.
    Chen, Yuhui
    Giordani, Vincent
    Barde, Fanny
    Novak, Petr
    Graham, Duncan
    Tarascon, Jean-Marie
    Bruce, Peter G.
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (28) : 6351 - 6355
  • [39] Perdew JP, 1997, PHYS REV LETT, V78, P1396, DOI 10.1103/PhysRevLett.77.3865
  • [40] Charge transport in lithium peroxide: relevance for rechargeable metal-air batteries
    Radin, Maxwell D.
    Siegel, Donald J.
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (08) : 2370 - 2379