Optimal number and sizes of the doses in fractionated radiotherapy according to the LQ model

被引:4
作者
Bruni, C. [1 ]
Conte, F. [1 ]
Papa, F. [1 ]
Sinisgalli, C. [1 ]
机构
[1] CNR, Ist Anal Sistemi & Informat A Ruberti, Via Taurini 19, I-00185 Rome, Italy
来源
MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA | 2019年 / 36卷 / 01期
关键词
non-linear programming; linear-quadratic LQ model; cancer radiotherapy; LINEAR-QUADRATIC MODEL; PROSTATE-CANCER; ACCELERATED RADIOTHERAPY; RADIATION-THERAPY; ALPHA/BETA RATIO; NORMAL TISSUE; TUMOR REPOPULATION; IN-VIVO; TIME; SCHEDULES;
D O I
10.1093/imammb/dqx020
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We address a non-linear programming problem to find the optimal scheme of dose fractionation in cancer radiotherapy. Using the LQ model to represent the response to radiation of tumour and normal tissues, we formulate a constrained non-linear optimization problem in terms of the variables number and sizes of the dose fractions. Quadratic constraints are imposed to guarantee that the damages to the early and late responding normal tissues do not exceed assigned tolerable levels. Linear constraints are set to limit the size of the daily doses. The optimal solutions are found in two steps: i) analytical determination of the optimal sizes of the fractional doses for a fixed, but arbitrary number of fractions n; ii) numerical simulation of a sequence of the previous optima for n increasing, and for specific tumour classes. We prove the existence of a finite upper bound for the optimal number of fractions. So, the optimum with respect to n is found by means of a finite number of comparisons amongst the optimal values of the objective function at the first step. In the numerical simulations, the radiosensitivity and repopulation parameters of the normal tissue are fixed, while we investigate the behaviour of the optimal solution for wide variations of the tumour parameters, relating our optima to real clinical protocols. We recognize that the optimality of hypo or equi-fractionated treatment schemes depends on the value of the tumour radiosensitivity ratio compared to the normal tissue radiosensitivity. Fast growing, radioresistant tumours may require particularly short optimal treatments.
引用
收藏
页码:1 / 53
页数:53
相关论文
共 85 条
[1]   Rectal bleeding after hypofractionated radiotherapy for prostate cancer: Correlation between clinical and dosimetric parameters and the incidence of grade 2 or worse rectal bleeding [J].
Akimoto, T ;
Muramatsu, H ;
Takahashi, M ;
Saito, J ;
Kitamoto, Y ;
Harashima, K ;
Miyazawa, Y ;
Yamada, M ;
Ito, K ;
Kurokawa, K ;
Yamanaka, H ;
Nakano, T ;
Mitsuhashi, N ;
Niibe, H .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2004, 60 (04) :1033-1039
[2]   Some implications of linear-quadratic-linear radiation dose-response with regard to hypofractionation [J].
Astrahan, Melvin .
MEDICAL PHYSICS, 2008, 35 (09) :4161-4172
[3]   Optimization of radiation dosing schedules for proneural glioblastoma [J].
Badri, H. ;
Pitter, K. ;
Holland, E. C. ;
Michor, F. ;
Leder, K. .
JOURNAL OF MATHEMATICAL BIOLOGY, 2016, 72 (05) :1301-1336
[4]   Optimal radiotherapy dose schedules under parametric uncertainty [J].
Badri, Hamidreza ;
Watanabe, Yoichi ;
Leder, Kevin .
PHYSICS IN MEDICINE AND BIOLOGY, 2016, 61 (01) :338-364
[5]   DOSE FRACTIONATION, DOSE-RATE AND ISO-EFFECT RELATIONSHIPS FOR NORMAL TISSUE RESPONSES [J].
BARENDSEN, GW .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 1982, 8 (11) :1981-1997
[6]   Reoxygenation and split-dose response to radiation in a tumour model with Krogh-type vascular geometry [J].
Bertuzzi, A. ;
Fasano, A. ;
Gandolfi, A. ;
Sinisgalli, C. .
BULLETIN OF MATHEMATICAL BIOLOGY, 2008, 70 (04) :992-1012
[7]   Optimal solution for a cancer radiotherapy problem [J].
Bertuzzi, A. ;
Bruni, C. ;
Papa, F. ;
Sinisgalli, C. .
JOURNAL OF MATHEMATICAL BIOLOGY, 2013, 66 (1-2) :311-349
[8]   Response of Tumor Spheroids to Radiation: Modeling and Parameter Estimation [J].
Bertuzzi, A. ;
Bruni, C. ;
Fasano, A. ;
Gandolfi, A. ;
Papa, F. ;
Sinisgalli, C. .
BULLETIN OF MATHEMATICAL BIOLOGY, 2010, 72 (05) :1069-1091
[9]  
BORTFELD T, 2015, MED PHYS, P1
[10]   Hyperfractionated or accelerated radiotherapy in head and neck cancer:: a meta-analysis [J].
Bourhis, Jean ;
Overgaard, Jens ;
Audry, Helene ;
Ang, Kian K. ;
Saunders, Michele ;
Bernier, Jacques ;
Horiot, Jean-Claude ;
Le Maitre, Aurlie ;
Pajak, Thomas F. ;
Paulsen, Michael G. ;
O'Sullivan, Brian ;
Dobrowsky, Werner ;
Hliniak, Andrzej ;
Skladowski, Krzysztof ;
Hay, John H. ;
Pinto, Luiz H. J. ;
Fallai, Carlo ;
Fu, Karen K. ;
Sylvester, Richard ;
Pignon, Jean-Pierre .
LANCET, 2006, 368 (9538) :843-854