Dividend optimization for regime-switching general diffusions

被引:16
作者
Zhu, Jinxia [1 ]
Chen, Feng [2 ]
机构
[1] Univ New S Wales, Sch Risk & Actuarial Studies, Sydney, NSW 2052, Australia
[2] Univ New S Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
关键词
Dividend; Dynamic programming principle; General diffusion; Optimization; Regime-switching; STOCHASTIC-CONTROL; RUIN; CONSUMPTION; PAYMENTS; MODELS; POLICY; RISK;
D O I
10.1016/j.insmatheco.2013.07.006
中图分类号
F [经济];
学科分类号
02 ;
摘要
We consider the optimal dividend distribution problem of a financial corporation whose surplus is modeled by a general diffusion process with both the drift and diffusion coefficients depending on the external economic regime as well as the surplus itself through general functions. The aim is to find a dividend payout scheme that maximizes the present value of the total dividends until ruin. We show that, depending on the configuration of the model parameters, there are two exclusive scenarios: (i) the optimal strategy uniquely exists and corresponds to paying out all surpluses in excess of a critical level (barrier) dependent on the economic regime and paying nothing when the surplus is below the critical level; (ii) there are no optimal strategies. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:439 / 456
页数:18
相关论文
共 26 条
[1]   A class of solvable stochastic dividend optimization problems: on the general impact of flexibility on valuation [J].
Alvarez, LHR ;
Virtanen, J .
ECONOMIC THEORY, 2006, 28 (02) :373-398
[2]  
[Anonymous], APPL MATH
[3]   Controlled diffusion models for optimal dividend pay-out [J].
Asmussen, S ;
Taksar, M .
INSURANCE MATHEMATICS & ECONOMICS, 1997, 20 (01) :1-15
[4]  
Asmussen S.R., 2000, Financ. Stoch, V4, P299, DOI [10.1007/s007800050075, DOI 10.1007/S007800050075]
[5]   Approximation of optimal reinsurance and dividend payout policies [J].
Bäuerle, N .
MATHEMATICAL FINANCE, 2004, 14 (01) :99-113
[6]  
Bogachey V.I., 2007, MEASURE THEORY
[7]   Classical and impulse stochastic control for the optimization of the dividend and risk policies of an insurance firm [J].
Cadenillas, A ;
Choulli, T ;
Taksar, M ;
Zhang, L .
MATHEMATICAL FINANCE, 2006, 16 (01) :181-202
[8]   Optimal dividend policy with mean-reverting cash reservoir [J].
Cadenillas, Abel ;
Sarkar, Sudipto ;
Zapatero, Fernando .
MATHEMATICAL FINANCE, 2007, 17 (01) :81-109
[9]  
Cajueiro D.O., 2004, BRAZ REV ECONOMETRIC, V24, P227, DOI [10.12660/bre.v24n22004.2711, DOI 10.12660/BRE.V24N22004.2711]
[10]   A constrained non-linear regular-singular stochastic control problem, with applications [J].
Guo, X ;
Liu, J ;
Zhou, XY .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2004, 109 (02) :167-187