Parameter Estimation and Non-Collocated Adaptive Stabilization for a Wave Equation Subject to General Boundary Harmonic Disturbance

被引:96
作者
Guo, Wei [1 ]
Guo, Bao-Zhu [2 ,3 ]
机构
[1] Univ Int Business & Econ, Sch Stat, Beijing 100029, Peoples R China
[2] Acad Sinica, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[3] Univ Witwatersrand, Sch Computat & Appl Math, ZA-2050 Johannesburg, South Africa
基金
新加坡国家研究基金会; 中国国家自然科学基金;
关键词
Backstepping; boundary control; distributed parameter systems; harmonic disturbance rejection; UNSTABLE PARABOLIC PDES; SHEAR FORCE FEEDBACK; CONTROLLABILITY; DECAY; BEAM;
D O I
10.1109/TAC.2013.2239003
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper is concerned with the parameter estimation and asymptotic stabilization of a 1-D wave equation that is subject to general harmonic disturbances at the controlled end and suffers from instability at the other end. First, we design an adaptive observer in terms of measured position and velocity. We then adopt the backstepping method for infinite-dimensional systems to design an observer-based output feedback law. The resulting closed-loop system is shown to be asymptotically stable. And the estimates of the parameters converge to the unknown parameters.
引用
收藏
页码:1631 / 1643
页数:13
相关论文
共 35 条