Structure tailoring of fluorine-doped TiO2 nanostructured powders

被引:35
作者
Todorova, N. [1 ]
Giannakopoulou, T. [1 ]
Vaimakis, T. [2 ]
Trapalis, C. [1 ]
机构
[1] NCSR Demokritos, Inst Mat Sci, Athens 15310, Greece
[2] Univ Ioannina, Dept Chem, GR-45110 Ioannina, Greece
来源
MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS | 2008年 / 152卷 / 1-3期
关键词
Fluorine-doped; TiO2; Sol-gel; Anatase; Rutile; Nanoparticles;
D O I
10.1016/j.mseb.2008.06.019
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Fluorine-doped nanocrystalline TiO2 powders with controlled anatase-rutile phase content are synthesized by a sol-gel route using NH4F and CF3COOH as fluorine sources. The X-ray diffraction (XRD) study reveals that fluorine-doping through NH4F leads to the formation of anatase crystalline phase, whereas F-doping through CF3COOH favors the formation of rutile along with anatase phase. These results are connected to the influence of the fluorine precursor on the pH of the starting solutions. The presence of the fluorine in the powders is confirmed using X-ray photoelectron spectroscopy (XPS). The dopant in concentrations between 11 and 16 at.% is found mainly in the form of metal fluoride. The measured UV-vis diffuse reflectance spectra and the calculated band gap widths using Kubelka-Munk phenomenological theory are in good agreement with the crystallographic results. The calculations reveal no change in the band gap values due to fluorine doping. The enhanced absorbance in the vis region and the red shift of the absorption edge are attributed to the presence of fluorine and the anatase/rutile phase composition of the TiO2 powders. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:50 / 54
页数:5
相关论文
共 50 条
[21]   Effect of Block Copolymer Additives on the Structure and Crystallinity of Nanostructured Mesoporous TiO2 [J].
Teoh, Lay Gaik .
CURRENT NANOSCIENCE, 2009, 5 (01) :113-116
[22]   Visible-Light-Driven Catalytic Properties and First-Principles Study of Fluorine-Doped TiO2 Nanotubes [J].
Su Ya-Ling ;
Li Yi ;
Du Ying-Xun ;
Lei Le-Cheng .
ACTA PHYSICO-CHIMICA SINICA, 2011, 27 (04) :939-945
[23]   Enhanced photocatalytic activity of TiO2 powders doped by Fe unevenly [J].
Liu, Song ;
Chen, Yanshan .
CATALYSIS COMMUNICATIONS, 2009, 10 (06) :894-899
[24]   Enhanced photocatalytic activity of fluorine doped TiO2 by loaded with Ag for degradation of organic pollutants [J].
Lin, Xiaoxia ;
Rong, Fei ;
Fu, Degang ;
Yuan, Chunwei .
POWDER TECHNOLOGY, 2012, 219 :173-178
[25]   Structural investigations on TiO2 and Fe-doped TiO2 nanoparticles synthesized by laser pyrolysis [J].
Alexandrescu, R. ;
Morjan, I. ;
Scarisoreanu, M. ;
Birjega, R. ;
Popovici, E. ;
Soare, I. ;
Gavrila-Florescu, L. ;
Voicu, I. ;
Sandu, I. ;
Dumitrache, F. ;
Prodan, G. ;
Vasile, E. ;
Figgemeier, E. .
THIN SOLID FILMS, 2007, 515 (24) :8438-8445
[26]   Investigation of the structure and dispersion of photoactive nanocrystal TiO2 powders [J].
D. V. Dyagilev ;
T. A. Larichev ;
V. M. Pugachev ;
A. A. Vladimirov ;
L. V. Sotnikova ;
T. S. Manina ;
A. Yu. Stepanov ;
Yu. N. Dudnikova .
Journal of Structural Chemistry, 2014, 55 :1152-1159
[27]   Investigation of the structure and dispersion of photoactive nanocrystal TiO2 powders [J].
Dyagilev, D. V. ;
Larichev, T. A. ;
Pugachev, V. M. ;
Vladimirov, A. A. ;
Sotnikova, L. V. ;
Manina, T. S. ;
Stepanov, A. Yu. ;
Dudnikova, Yu. N. .
JOURNAL OF STRUCTURAL CHEMISTRY, 2014, 55 (06) :1152-1159
[28]   Synthesis of carbon-doped photocatalytic TiO2 nano-powders by AFD process [J].
Lim, Gyeong-Taek ;
Kim, Kyung Hwan ;
Park, Jun ;
Ohk, Seung-Ho ;
Kim, Jong-Ho ;
Cho, Dong Lyun .
JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2010, 16 (05) :723-727
[29]   Influence of crystallographic structure on the humidity sensing properties of KCl-doped TiO2 nanofibers [J].
Qi, Qi ;
Feng, Yingliang ;
Zhang, Tong ;
Zheng, Xuejun ;
Lu, Geyu .
SENSORS AND ACTUATORS B-CHEMICAL, 2009, 139 (02) :611-617
[30]   Surface characteristics and electronic structure of photocatalytic reactions on TiO2 and doped TiO2 nanoparticles [J].
Osterlund, L. ;
Mattsson, A. .
SOLAR HYDROGEN AND NANOTECHNOLOGY, 2006, 6340