Structure tailoring of fluorine-doped TiO2 nanostructured powders

被引:35
|
作者
Todorova, N. [1 ]
Giannakopoulou, T. [1 ]
Vaimakis, T. [2 ]
Trapalis, C. [1 ]
机构
[1] NCSR Demokritos, Inst Mat Sci, Athens 15310, Greece
[2] Univ Ioannina, Dept Chem, GR-45110 Ioannina, Greece
来源
MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS | 2008年 / 152卷 / 1-3期
关键词
Fluorine-doped; TiO2; Sol-gel; Anatase; Rutile; Nanoparticles;
D O I
10.1016/j.mseb.2008.06.019
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Fluorine-doped nanocrystalline TiO2 powders with controlled anatase-rutile phase content are synthesized by a sol-gel route using NH4F and CF3COOH as fluorine sources. The X-ray diffraction (XRD) study reveals that fluorine-doping through NH4F leads to the formation of anatase crystalline phase, whereas F-doping through CF3COOH favors the formation of rutile along with anatase phase. These results are connected to the influence of the fluorine precursor on the pH of the starting solutions. The presence of the fluorine in the powders is confirmed using X-ray photoelectron spectroscopy (XPS). The dopant in concentrations between 11 and 16 at.% is found mainly in the form of metal fluoride. The measured UV-vis diffuse reflectance spectra and the calculated band gap widths using Kubelka-Munk phenomenological theory are in good agreement with the crystallographic results. The calculations reveal no change in the band gap values due to fluorine doping. The enhanced absorbance in the vis region and the red shift of the absorption edge are attributed to the presence of fluorine and the anatase/rutile phase composition of the TiO2 powders. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:50 / 54
页数:5
相关论文
共 50 条
  • [1] Study of fluorine-doped TiO2 sol-gel thin coatings
    Giannakopoulou, T.
    Todorova, N.
    Vaimakis, T.
    Ladas, S.
    Trapalis, C.
    JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 2008, 130 (04):
  • [2] Hydrothermal growth of well-aligned TiO2 nanorods on fluorine-doped tin oxide glass
    Prathan, Aschariya
    Bhoomanee, Chawalit
    Ruankham, Pipat
    Choopun, Supab
    Gardchareon, Atcharawon
    Phadungdhitidhada, Surachet
    Wongratanaphisan, Duangmanee
    MATERIALS TODAY-PROCEEDINGS, 2019, 17 : 1514 - 1520
  • [3] Effect of fluorine-doped TiO2 photoanode on electron transport, recombination dynamics and improved DSSC efficiency
    Subalakshmi, Kumar
    Senthilselvan, Jayaraman
    SOLAR ENERGY, 2018, 171 : 914 - 928
  • [4] Synthesis and characterization of TiO2 nanotube film on fluorine-doped tin oxide glass
    Wang, Jinshu
    Wang, Hong
    Li, Hongyi
    Wu, Junshu
    THIN SOLID FILMS, 2013, 544 : 276 - 280
  • [5] Photocatalytic properties of nanosilver-doped TiO2 powders
    Belka, R.
    Keczkowska, J.
    PHOTONICS APPLICATIONS IN ASTRONOMY, COMMUNICATIONS, INDUSTRY, AND HIGH-ENERGY PHYSICS EXPERIMENTS 2019, 2019, 11176
  • [6] Designed fabrication of fluorine-doped carbon coated mesoporous TiO2 hollow spheres for improved lithium storage
    Geng, Hongbo
    Ming, Hai
    Ge, Danhua
    Zheng, Junwei
    Gu, Hongwei
    ELECTROCHIMICA ACTA, 2015, 157 : 1 - 7
  • [7] Fluorine-Doped TiO2 Materials: Photocatalytic Activity vs Time-Resolved Photoluminescence
    Dozzi, Maria Vittoria
    D'Andrea, Cosimo
    Ohtani, Bunsho
    Valentini, Gianluca
    Selli, Elena
    JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (48) : 25586 - 25595
  • [8] Cold-Sprayed TiO2 Coatings from Nanostructured Ceramic Agglomerated Powders
    Toibah, A. R.
    Sato, M.
    Yamada, M.
    Fukumoto, M.
    MATERIALS AND MANUFACTURING PROCESSES, 2016, 31 (11) : 1527 - 1534
  • [9] Morphology, structure and photowettability of TiO2 coatings doped with copper and fluorine
    Sobczyk-Guzenda, Anna
    Owczarek, Slawomir
    Fijalkowski, Mateusz
    Batory, Damian
    Gazicki-Lipman, Maciej
    CERAMICS INTERNATIONAL, 2018, 44 (05) : 5076 - 5085
  • [10] Simple Preparation of Fluorine-Doped TiO2 Photoanode for High Performance Dye Sensitized Solar Cells
    Song, Jun-Ling
    Wang, Xiu
    Wong, C. C.
    ELECTROCHIMICA ACTA, 2015, 173 : 834 - 838