Effective electron mass and phonon modes in n-type hexagonal InN -: art. no. 115206

被引:178
作者
Kasic, A
Schubert, M
Saito, Y
Nanishi, Y
Wagner, G
机构
[1] Univ Leipzig, Fak Phys & Geowissensch, D-04103 Leipzig, Germany
[2] Univ Nebraska, Dept Elect Engn, Ctr Microelect & Opt Mat Res, Lincoln, NE 68588 USA
[3] Ritsumeikan Univ, Fac Sci & Engn, Shiga 5258577, Japan
[4] Inst Oberflachenmodifizierung Leipzig eV, D-04318 Leipzig, Germany
来源
PHYSICAL REVIEW B | 2002年 / 65卷 / 11期
关键词
D O I
10.1103/PhysRevB.65.115206
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Infrared spectroscopic ellipsometry and micro-Raman scattering are used to study vibrational and electronic properties of high-quality hexagonal InN. The 0.22-mum-thick highly n-conductive InN film was grown on c-plane sapphire by radio-frequency molecular-beam epitaxy. Combining our results from the ellipsometry data analysis with Hall-effect measurements, the isotropically averaged effective electron mass in InN is determined as 0.14m(0). The resonantly excited zone center E-1(TO) phonon mode is observed at 477 cm(-1) in the ellipsometry spectra. Despite the high electron concentration in the film, a strong Raman mode occurs in the spectral range of the unscreened A(1)(LO) phonon. Because an extended carrier-depleted region at the sample surface can be excluded from the ellipsometry-model analysis, we assign this mode to the lower branch of the large-wave-vector LO-phonon-plasmon coupled modes arising from nonconserving wave-vector scattering processes. The spectral position of this mode at 590 cm(-1) constitutes a lower limit for the unscreened A(1)(LO) phonon frequency.
引用
收藏
页码:1152061 / 1152067
页数:7
相关论文
共 30 条
  • [1] RAMAN-SPECTROSCOPY - VERSATILE TOOL FOR CHARACTERIZATION OF THIN-FILMS AND HETEROSTRUCTURES OF GAAS AND ALXGA1-XAS
    ABSTREITER, G
    BAUSER, E
    FISCHER, A
    PLOOG, K
    [J]. APPLIED PHYSICS, 1978, 16 (04): : 345 - 352
  • [2] ABSTREITER G, 1984, LIGHT SCATTERING SOL, V4
  • [3] Raman spectroscopy of wurtzite InN films grown on Si
    Agulló-Rueda, F
    Mendez, EE
    Bojarczuk, B
    Guha, S
    [J]. SOLID STATE COMMUNICATIONS, 2000, 115 (01) : 19 - 21
  • [4] Azzam R. M., 1984, ELLIPSOMETRY POLARIZ
  • [5] Ab initio phonon dispersions of wurtzite AlN, GaN, and InN
    Bungaro, C
    Rapcewicz, K
    Bernholc, J
    [J]. PHYSICAL REVIEW B, 2000, 61 (10) : 6720 - 6725
  • [6] Experimental and theoretical studies of phonons in hexagonal InN
    Davydov, VY
    Emtsev, VV
    Goncharuk, IN
    Smirnov, AN
    Petrikov, VD
    Mamutin, VV
    Vekshin, VA
    Ivanov, SV
    Smirnov, MB
    Inushima, T
    [J]. APPLIED PHYSICS LETTERS, 1999, 75 (21) : 3297 - 3299
  • [7] Identification of Raman-active phonon modes in oriented platelets of InN and polycrystalline InN
    Dyck, JS
    Kim, K
    Limpijumnong, S
    Lambrecht, WRL
    Kash, K
    Angus, JC
    [J]. SOLID STATE COMMUNICATIONS, 2000, 114 (07) : 355 - 360
  • [8] PSEUDOPOTENTIAL BAND-STRUCTURE OF INDIUM NITRIDE
    FOLEY, CP
    TANSLEY, TL
    [J]. PHYSICAL REVIEW B, 1986, 33 (02): : 1430 - 1433
  • [9] OPTICAL-CONSTANTS OF INDIUM NITRIDE
    GUO, QX
    KATO, O
    FUJISAWA, M
    YOSHIDA, A
    [J]. SOLID STATE COMMUNICATIONS, 1992, 83 (09) : 721 - 723
  • [10] Phonon structure of InN grown by atomic layer epitaxy
    Inushima, T
    Shiraishi, T
    Davydov, VY
    [J]. SOLID STATE COMMUNICATIONS, 1999, 110 (09) : 491 - 495