Effective electron mass and phonon modes in n-type hexagonal InN -: art. no. 115206

被引:180
作者
Kasic, A
Schubert, M
Saito, Y
Nanishi, Y
Wagner, G
机构
[1] Univ Leipzig, Fak Phys & Geowissensch, D-04103 Leipzig, Germany
[2] Univ Nebraska, Dept Elect Engn, Ctr Microelect & Opt Mat Res, Lincoln, NE 68588 USA
[3] Ritsumeikan Univ, Fac Sci & Engn, Shiga 5258577, Japan
[4] Inst Oberflachenmodifizierung Leipzig eV, D-04318 Leipzig, Germany
来源
PHYSICAL REVIEW B | 2002年 / 65卷 / 11期
关键词
D O I
10.1103/PhysRevB.65.115206
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Infrared spectroscopic ellipsometry and micro-Raman scattering are used to study vibrational and electronic properties of high-quality hexagonal InN. The 0.22-mum-thick highly n-conductive InN film was grown on c-plane sapphire by radio-frequency molecular-beam epitaxy. Combining our results from the ellipsometry data analysis with Hall-effect measurements, the isotropically averaged effective electron mass in InN is determined as 0.14m(0). The resonantly excited zone center E-1(TO) phonon mode is observed at 477 cm(-1) in the ellipsometry spectra. Despite the high electron concentration in the film, a strong Raman mode occurs in the spectral range of the unscreened A(1)(LO) phonon. Because an extended carrier-depleted region at the sample surface can be excluded from the ellipsometry-model analysis, we assign this mode to the lower branch of the large-wave-vector LO-phonon-plasmon coupled modes arising from nonconserving wave-vector scattering processes. The spectral position of this mode at 590 cm(-1) constitutes a lower limit for the unscreened A(1)(LO) phonon frequency.
引用
收藏
页码:1152061 / 1152067
页数:7
相关论文
共 30 条
[1]   RAMAN-SPECTROSCOPY - VERSATILE TOOL FOR CHARACTERIZATION OF THIN-FILMS AND HETEROSTRUCTURES OF GAAS AND ALXGA1-XAS [J].
ABSTREITER, G ;
BAUSER, E ;
FISCHER, A ;
PLOOG, K .
APPLIED PHYSICS, 1978, 16 (04) :345-352
[2]  
ABSTREITER G, 1984, LIGHT SCATTERING SOL, V4
[3]   Raman spectroscopy of wurtzite InN films grown on Si [J].
Agulló-Rueda, F ;
Mendez, EE ;
Bojarczuk, B ;
Guha, S .
SOLID STATE COMMUNICATIONS, 2000, 115 (01) :19-21
[4]  
Azzam R. M., 1984, ELLIPSOMETRY POLARIZ
[5]   Ab initio phonon dispersions of wurtzite AlN, GaN, and InN [J].
Bungaro, C ;
Rapcewicz, K ;
Bernholc, J .
PHYSICAL REVIEW B, 2000, 61 (10) :6720-6725
[6]   Experimental and theoretical studies of phonons in hexagonal InN [J].
Davydov, VY ;
Emtsev, VV ;
Goncharuk, IN ;
Smirnov, AN ;
Petrikov, VD ;
Mamutin, VV ;
Vekshin, VA ;
Ivanov, SV ;
Smirnov, MB ;
Inushima, T .
APPLIED PHYSICS LETTERS, 1999, 75 (21) :3297-3299
[7]   Identification of Raman-active phonon modes in oriented platelets of InN and polycrystalline InN [J].
Dyck, JS ;
Kim, K ;
Limpijumnong, S ;
Lambrecht, WRL ;
Kash, K ;
Angus, JC .
SOLID STATE COMMUNICATIONS, 2000, 114 (07) :355-360
[8]   PSEUDOPOTENTIAL BAND-STRUCTURE OF INDIUM NITRIDE [J].
FOLEY, CP ;
TANSLEY, TL .
PHYSICAL REVIEW B, 1986, 33 (02) :1430-1433
[9]   OPTICAL-CONSTANTS OF INDIUM NITRIDE [J].
GUO, QX ;
KATO, O ;
FUJISAWA, M ;
YOSHIDA, A .
SOLID STATE COMMUNICATIONS, 1992, 83 (09) :721-723
[10]   Phonon structure of InN grown by atomic layer epitaxy [J].
Inushima, T ;
Shiraishi, T ;
Davydov, VY .
SOLID STATE COMMUNICATIONS, 1999, 110 (09) :491-495