Seasonal and interannual variations of upper ocean heat balance off the west coast of Australia

被引:58
作者
Feng, Ming [1 ]
Biastoch, Arne [2 ]
Boening, Claus [2 ]
Caputi, Nick [3 ]
Meyers, Gary [4 ]
机构
[1] CSIRO Marine & Atmospher Res, Floreat, WA 6014, Australia
[2] Leibniz Inst Meereswissensch, D-24105 Kiel, Germany
[3] Dept Fisheries, Western Australian Fisheries & Marine Res Labs, North Beach, WA 6920, Australia
[4] Univ Tasmania, Hobart, Tas 7001, Australia
关键词
D O I
10.1029/2008JC004908
中图分类号
P7 [海洋学];
学科分类号
0707 ;
摘要
The Leeuwin Current, a warm, poleward flowing eastern boundary current, dominates the surface circulation off the west coast of Australia and has profound influence on regional marine ecosystem and fisheries recruitment. In this study, the seasonal and interannual variations of upper ocean heat balance in the Leeuwin Current region are analyzed by using an eddy-resolving numerical model simulation, as a first step to quantify the climate impacts on regional ocean thermodynamics and marine ecosystem. The volume transport and heat advection of the Leeuwin Current are stronger during the austral winter on the seasonal cycle and are stronger during a La Nina event on the interannual scale. On both seasonal and interannual timescales, the mixed layer heat budget off the west coast of Australia is predominantly balanced between the variations of the Leeuwin Current heat advection and heat flux across the air-sea interface. On the interannual timescale, the variation of the Leeuwin Current heat advection tends to lead that of the air-sea (latent) heat flux by two months, which is likely a reflection of advection timescales of the Leeuwin Current and its eddy field. The interannual variation of the average February-April sea surface temperature off the west coast of Australia, which is crucial for the larval settlement of western rock lobster, is mostly influenced by the Leeuwin Current heat advection as well as the ocean memory from the previous austral winter, with the air-sea heat exchange playing a buffering role.
引用
收藏
页数:16
相关论文
共 41 条
[1]  
Adcroft A, 1997, MON WEATHER REV, V125, P2293, DOI 10.1175/1520-0493(1997)125<2293:ROTBSC>2.0.CO
[2]  
2
[3]   Observed temperature trends in the Indian Ocean over 1960-1999 and associated mechanisms [J].
Alory, Gael ;
Wijffels, Susan ;
Meyers, Gary .
GEOPHYSICAL RESEARCH LETTERS, 2007, 34 (02)
[4]  
[Anonymous], [No title captured]
[5]   Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy-permitting resolution [J].
Barnier, Bernard ;
Madec, Gurvan ;
Penduff, Thierry ;
Molines, Jean-Marc ;
Treguier, Anne-Marie ;
Le Sommer, Julien ;
Beckmann, Aike ;
Biastoch, Arne ;
Boening, Claus ;
Dengg, Joachim ;
Derval, Corine ;
Durand, Edmee ;
Gulev, Sergei ;
Remy, Elizabeth ;
Talandier, Claude ;
Theetten, Sebastien ;
Maltrud, Mathew ;
McClean, Julie ;
De Cuevas, Beverly .
OCEAN DYNAMICS, 2006, 56 (5-6) :543-567
[6]   Separation of quasi-semiannual Rossby waves from the eastern boundary of the Indian Ocean [J].
Birol, F ;
Morrow, R .
JOURNAL OF MARINE RESEARCH, 2003, 61 (06) :707-723
[7]   Environmental effects on recruitment of the western rock lobster, Panulirus cygnus [J].
Caputi, N ;
Chubb, C ;
Pearce, A .
MARINE AND FRESHWATER RESEARCH, 2001, 52 (08) :1167-1174
[8]  
CAPUTI N, 2008, FRESHWATER IN PRESS
[9]  
CAPUTI N, 2008, OCEANOGR, V17, P147, DOI DOI 10.1111/J.1365-2419.2008.00471.X
[10]   OBSERVATIONS OF A SOUTH-FLOWING CURRENT IN THE SOUTHEASTERN INDIAN-OCEAN [J].
CRESSWELL, GR ;
GOLDING, TJ .
DEEP-SEA RESEARCH PART A-OCEANOGRAPHIC RESEARCH PAPERS, 1980, 27 (06) :449-466