Decomposition of toluene in a steady-state atmospheric-pressure glow discharge

被引:47
作者
Trushkin, A. N. [1 ]
Grushin, M. E. [1 ]
Kochetov, I. V. [1 ]
Trushkin, N. I. [1 ]
Akishev, Yu. S. [1 ]
机构
[1] Troitsk Inst Innovat & Fus Res, Moscow 142092, Russia
基金
俄罗斯基础研究基金会;
关键词
VOC DECOMPOSITION; AIR; CORONA; SIMULATION; TRANSITION; ABATEMENT; KINETICS; NITROGEN; OXYGEN;
D O I
10.1134/S1063780X13020025
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Results are presented from experimental studies of decomposition of toluene (C6H5CH3) in a polluted air flow by means of a steady-state atmospheric pressure glow discharge at different water vapor contents in the working gas. The experimental results on the degree of C6H5CH3 removal are compared with the results of computer simulations conducted in the framework of the developed kinetic model of plasma chemical decomposition of toluene in the N-2: O-2: H2O gas mixture. A substantial influence of the gas flow humidity on toluene decomposition in the atmospheric pressure glow discharge is demonstrated. The main mechanisms of the influence of humidity on C6H5CH3 decomposition are determined. The existence of two stages in the process of toluene removal, which differ in their duration and the intensity of plasma chemical decomposition of C6H5CH3 is established. Based on the results of computer simulations, the composition of the products of plasma chemical reactions at the output of the reactor is analyzed as a function of the specific energy deposition and gas flow humidity. The existence of a catalytic cycle in which hydroxyl radical OH acts a catalyst and which substantially accelerates the recombination of oxygen atoms and suppression of ozone generation when the plasma-forming gas contains water vapor is established.
引用
收藏
页码:167 / 182
页数:16
相关论文
共 50 条
  • [1] Simulation of nonstationary phenomena in atmospheric-pressure glow discharge
    Korolev, Yu. D.
    Frants, O. B.
    Nekhoroshev, V. O.
    Suslov, A. I.
    Kas'yanov, V. S.
    Shemyakin, I. A.
    Bolotov, A. V.
    PLASMA PHYSICS REPORTS, 2016, 42 (06) : 592 - 600
  • [2] Study of atmospheric-pressure glow discharge plasma jets based on analysis of electric field
    Liu, Wenzheng
    Ma, Chuanlong
    Cui, Weisheng
    Yang, Xiao
    Wang, Tahan
    Chen, Xiuyang
    APPLIED PHYSICS LETTERS, 2017, 110 (02)
  • [3] On the increase in the limiting current of an atmospheric-pressure glow discharge in an argon flow
    Baldanov, B. B.
    Ranzhurov, Ts. V.
    TECHNICAL PHYSICS, 2014, 59 (04) : 621 - 623
  • [4] Study on the glow discharge in the atmospheric pressure
    Liu, Wenzheng
    Jia, Lingyun
    Yan, Wei
    Kong, Fei
    Hao, Yuchong
    CURRENT APPLIED PHYSICS, 2011, 11 (05) : S117 - S120
  • [5] Impact of Pulsed Atmospheric-Pressure Glow Discharge on Nanometer-Thick Aluminum Films
    Emelyanov, O. A.
    Plotnikov, A. P.
    Feklistov, E. G.
    TECHNICAL PHYSICS LETTERS, 2021, 47 (03) : 271 - 274
  • [6] The DC glow discharge at atmospheric pressure
    Goossens, O
    Callebaut, T
    Akishev, Y
    Napartovich, A
    Trushkin, N
    Leys, C
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2002, 30 (01) : 176 - 177
  • [7] Experimental study on mode and mechanism of multi-pulse atmospheric-pressure glow discharges
    Hao Yan-Peng
    Yang Lin
    Tu En-Lai
    Chen Jian-Yang
    Zhu Zhan-Wen
    Wang Xiao-Lei
    ACTA PHYSICA SINICA, 2010, 59 (04) : 2610 - 2616
  • [8] Study of an atmospheric-pressure discharge in air
    Castillo, F.
    Valdes, D.
    Flores, O.
    Campillo, B.
    Martinez, H.
    2017 16TH LATIN AMERICAN WORKSHOP ON PLASMA PHYSICS (LAWPP 2017), 2017, : 37 - 42
  • [9] Surface modification of polytetrafluoroethylene film using single liquid electrode atmospheric-pressure glow discharge
    Zhou Lan
    Lue Guo-Hua
    Chen Wei
    Pang Hua
    Zhang Gu-Ling
    Yang Si-Ze
    CHINESE PHYSICS B, 2011, 20 (06)
  • [10] CONCENTRATION OF OXYGEN ATOMS IN ATMOSPHERIC PRESSURE AIR GLOW DISCHARGE
    Petrov, A. E.
    Titov, V. A.
    Smirnov, S. A.
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII KHIMIYA I KHIMICHESKAYA TEKHNOLOGIYA, 2013, 56 (02): : 80 - +