Fundamental Explorations of Spring-Varied, Free Piston Linear Engine Devices

被引:8
作者
Robinson, Matthew C. [1 ]
Clark, Nigel N. [1 ]
机构
[1] W Virginia Univ, Mech & Aerosp Engn, Morgantown, WV 26505 USA
来源
JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME | 2015年 / 137卷 / 10期
关键词
Electric power generation - Engine pistons - Compression ratio (machinery) - Efficiency - Heat transfer - Rankine cycle - Combustion - System stability;
D O I
10.1115/1.4030094
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The conventional crank-based internal combustion engine faces many challenges to remain a viable option for electric power generation. Limitations in mechanical, thermal, and combustion efficiencies must be overcome by innovations in existing technologies and progress toward new ones. The free piston linear engine (FPLE) has the potential to meet these challenges. Friction losses are reduced by avoiding rotational motion and linkages. Instead, electrical power is generated by the oscillation of the translator through a stator. Naturally, variable compression ratio provides a unique platform to employ advanced combustion regimes. However, possibly high variations in stroke length result in unknown dead center piston positions and greater difficulties in compression control as compared to conventional engines. Without control, adverse occurrences such as misfire, stall, over-fueling, and rapid load changes pose greater complications for stable system operation. Based on previous research, it is believed that incorporating springs will advance former designs by both increasing system frequency and providing a restoring force to improve cycle-to-cycle stability. Despite growing interest in the FPLE, current literature does not address the use of springs within a dual, opposed piston design. This investigation is an extension of recent efforts in the fundamental analysis of such a device. Previous work by the authors combined the dynamics of a damped, spring mass system with in-cylinder thermodynamic expressions to produce a closed-form non-dimensional model. Simulations of this model were used to describe ideal Otto cycle as the equilibrium operating point. The present work demonstrates more realistic modeling of the device in three distinct areas. In the previous model, the work term was a constant coefficient over the length of the stroke, instantaneous heat addition (representing combustion) was only seen at top dead center (TDC) positions, and the use of the Otto cycle included no mechanism for heat transfer except at dead center positions. Instead, a position based sinusoid is employed for the work coefficient causing changes to the velocity and acceleration profiles. Instantaneous heat addition prior to TDC is allowed causing the compression ratio to decrease toward stable, Otto operation, and a simple heat transfer scheme is used to permit cylinder gas heat exchange throughout the stroke resulting in deviation from Otto operation. Regardless, simulations show that natural system stability arises under the right conditions. Highest efficiencies are achieved at a high compression ratio with minimal heat transfer and near-TDC combustion.
引用
收藏
页数:8
相关论文
共 20 条
[1]  
Aichlmayr Hans Thomas, 2002, DESIGN CONSIDERATION
[2]  
Atkinson C., 1999, 1999010921 SAE
[3]  
Clark N., 1998, 982692 SAE
[4]  
Clark N., 1998, SPRING TECHN C ASME, V30-2
[5]   Advanced compression-ignition engines-understanding the in-cylinder processes [J].
Dec, John E. .
PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2009, 32 :2727-2742
[6]  
Flowers D, 2000, SAE T, P2646
[7]  
Fredriksson J., 2004, SAE Technical Paper 2004-01-1871
[8]  
Goldsborough S.S., 1999, SAE T, P959
[9]   A review of free-piston engine history and applications [J].
Mikalsen, R. ;
Roskilly, A. P. .
APPLIED THERMAL ENGINEERING, 2007, 27 (14-15) :2339-2352
[10]   Predictive piston motion control in a free-piston internal combustion engine [J].
Mikalsen, R. ;
Jones, E. ;
Roskilly, A. P. .
APPLIED ENERGY, 2010, 87 (05) :1722-1728