Automated detection of lung nodules in low-dose computed tomography

被引:0
|
作者
Cascio, D. [1 ]
Cheran, S. C. [2 ,3 ]
Chincarini, A. [4 ]
De Nunzio, G. [5 ]
Delogu, P. [6 ,7 ]
Fantacci, M. E. [6 ,7 ]
Gargano, G. [8 ,9 ]
Gori, I. [7 ]
Masala, G. L. [10 ,11 ]
Martinez, A. Preite [12 ]
Retico, A. [7 ]
Santoro, M. [13 ]
Spinelli, C. [14 ]
Tarantino, T. [15 ]
机构
[1] Univ Palermo, Dipartimento Fis & Tecnol Relat, I-90133 Palermo, Italy
[2] Univ Genoa, Dipartimento Fis, Genoa, Italy
[3] Ist Nazl Fis Nucl, Sez Torino, Milan, Italy
[4] Ist Nazl Fis Nucl, Sez Genova, Milan, Italy
[5] Univ Lecce, Dipartimento Sci Mat, I-73100 Lecce, Italy
[6] Univ Pisa, Dipartimento Fis, I-56100 Pisa, Italy
[7] Ist Nazl Fis Nucl, Sez Pisa, Milan, Italy
[8] Univ Bari, Dipartimento Interateneo Fis M Merlin, I-70121 Bari, Italy
[9] Ist Nazl Fis Nucl, Sez Bari, Milan, Italy
[10] Univ Sassari, Struttura Dipartimentale Matemat & Fis, I-07100 Sassari, Italy
[11] Ist Nazl Fis Nucl, Sez Cagliari, Milan, Italy
[12] Ctr & Ric Enrico Fermi, Rome, Italy
[13] Univ Naples Federico II, Dipartimento Sci Fis, I-80138 Naples, Italy
[14] Univ Pisana, Azienda Osped, Unita Operat Radiodiagnost 2, Pisa, Italy
[15] Univ Pisa, Div Radiol Diagnost & Interventist, Dipartimento Oncol Trapianti & Nuove Tecnol Med, I-56100 Pisa, Italy
关键词
Computer-aided detection (CAD); Low-dose computed tomography (LDCT); Thin-slice CT; Lung cancer screening;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
A computer-aided detection (CAD) system for the identification of pulmonary nodules in low-dose multi-detector computed-tomography (CT) images has been developed in the framework of the MAGIC-5 Italian project. One of the main goals of this project is to build a distributed database of lung CT scans in order to enable automated image analysis through a data and cpu GRID infrastructure. The basic modules of our lung-CAD system, consisting in a 3D dot-enhancement filter for nodule detection and a neural classifier for false-positive finding reduction, are described. The system was designed and tested for both internal and sub-pleural nodules. The database used in this study consists of 17 low-dose CT scans reconstructed with thin slice thickness (similar to 300 slices/scan). The preliminary results are shown in terms of the FROC analysis reporting a good sensitivity (85% range) for both internal and sub-pleural nodules at an acceptable level of false positive findings (1-9 FP/scan); the sensitivity value remains very high (75% range) even at 1-6 FP/scan.
引用
收藏
页码:S357 / S359
页数:3
相关论文
共 50 条
  • [1] Computerized scheme for automated detection of lung nodules in low-dose computed tomography images for lung cancer screening
    Arimura, H
    Katsuragawa, S
    Suzuki, K
    Li, F
    Shiraishi, J
    Sone, S
    Doi, K
    ACADEMIC RADIOLOGY, 2004, 11 (06) : 617 - 629
  • [2] An automated system for lung nodule detection in low-dose computed tomography
    Gori, I.
    Fantacci, M. E.
    Martinez, A. Preite
    Retico, A.
    MEDICAL IMAGING 2007: COMPUTER-AIDED DIAGNOSIS, PTS 1 AND 2, 2007, 6514
  • [3] Subsolid Pulmonary Nodules in Low-dose Computed Tomography
    Hekmat, K.
    Bruns, C. J.
    CHIRURG, 2019, 90 (Suppl 2): : S113 - S113
  • [4] Subsolid Pulmonary Nodules in Low-Dose Computed Tomography
    Hekmat, K.
    Bruns, C. J.
    CHIRURG, 2018, 89 (12): : 1008 - 1008
  • [5] Using Low-Dose Computed Tomography for Early Detection of Lung Cancer
    Rulli, Kristi S.
    Matthews, Eric
    RADIOLOGIC TECHNOLOGY, 2020, 92 (01) : 23 - 31
  • [6] The use of contrast for automated pulmonary nodule detection in low-dose computed tomography
    Narayan, TK
    Herman, GT
    MEDICAL PHYSICS, 1999, 26 (03) : 427 - 437
  • [7] Automated detection of lung nodules in computed tomography images: a review
    S. L. A. Lee
    A. Z. Kouzani
    E. J. Hu
    Machine Vision and Applications, 2012, 23 : 151 - 163
  • [8] Automated detection of lung nodules in computed tomography images: a review
    Lee, S. L. A.
    Kouzani, A. Z.
    Hu, E. J.
    MACHINE VISION AND APPLICATIONS, 2012, 23 (01) : 151 - 163
  • [9] Evaluation of automated lung nodule detection on low-dose computed tomography scans from a lung cancer screening program
    Armato, SG
    Roy, AS
    MacMahon, H
    Li, F
    Doi, K
    Sone, S
    Altman, MB
    ACADEMIC RADIOLOGY, 2005, 12 (03) : 337 - 346
  • [10] Ground-Glass Nodules Detected With Low-Dose Computed Tomography Screening For Lung Cancer
    Moriguchi, S.
    Amakawa, K.
    Takahashi, Y.
    Ogawa, K.
    Murase, K.
    Hanada, S.
    Mochizuki, S.
    Uruga, H.
    Miyamoto, A.
    Takaya, H.
    Morokawa, N.
    Hujii, T.
    Kurosaki, A.
    Kishi, K.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2017, 195