Soliton Solutions, Backlund Transformation and Wronskian Solutions for the (2+1)-Dimensional Variable-Coefficient Konopelchenko-Dubrovsky Equations in Fluid Mechanics

被引:2
作者
Xu, Peng-Bo [1 ,2 ]
Gao, Yi-Tian [1 ,2 ,3 ]
Wang, Lei [1 ,2 ]
Meng, De-Xin [1 ,2 ]
Gai, Xiao-Ling [1 ,2 ]
机构
[1] Beijing Univ Aeronaut & Astronaut, Minist Educ, Key Lab Fluid Mech, Beijing 100191, Peoples R China
[2] Beijing Univ Aeronaut & Astronaut, Natl Lab Computat Fluid Dynam, Beijing 100191, Peoples R China
[3] Beijing Univ Aeronaut & Astronaut, State Key Lab Software Dev Environm, Beijing 100191, Peoples R China
来源
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES | 2012年 / 67卷 / 3-4期
基金
中国国家自然科学基金;
关键词
(2+1)-Dimensional Variable-Coefficient Konopelchenko-Dubrovsky Equations; Fluid Mechanics; Soliton Solutions; Backlund Transformation; Wronskian Solutions; Symbolic Computation; TRAVELING-WAVE SOLUTIONS; KADOMTSEV-PETVIASHVILI EQUATION; PARTIAL-DIFFERENTIAL-EQUATIONS; INHOMOGENEOUS OPTICAL-FIBERS; ION-ACOUSTIC-WAVES; F-EXPANSION METHOD; SYMBOLIC-COMPUTATION; GARDNER EQUATION; CONSTRUCTION; NEBULONS;
D O I
10.5560/ZNA.2011-0071
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This paper is to investigate the (2 + 1)-dimensional variable-coefficient Konopelchenko-Dubrovsky equations, which can be applied to the phenomena in stratified shear flow, internal and shallow-water waves, plasmas, and other fields. The bilinear-form equations are transformed from the original equations, and soliton solutions are derived via symbolic computation. Soliton solutions and collisions are illustrated. The bilinear-form Backlund transformation and another soliton solution are obtained. Wronskian solutions are constructed via the Backlund transformation and solution.
引用
收藏
页码:132 / 140
页数:9
相关论文
共 55 条
[1]  
[Anonymous], 1980, DIRECT METHOD SOLITO
[2]   Symbolic calculation in chemistry: Selected examples [J].
Barnett, MP ;
Capitani, JF ;
von zur Gathen, J ;
Gerhard, J .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2004, 100 (02) :80-104
[3]   Explicit exact solutions for the (2+1)-dimensional Konopelchenko-Dubrovsky equation [J].
Feng, Wei-Gui ;
Lin, Chang .
APPLIED MATHEMATICS AND COMPUTATION, 2009, 210 (02) :298-302
[4]   New kinds of solutions to Gardner equation [J].
Fu, ZT ;
Liu, SD ;
Liu, SK .
CHAOS SOLITONS & FRACTALS, 2004, 20 (02) :301-309
[5]   Reply to: "Comment on: 'Spherical Kadomtsev-Petviashvili equation and nebulons for dust ion-acoustic waves with symbolic computation'" [Phys. Lett. A 361 (2007) 520] [J].
Gao, Yi-Tian ;
Tian, Bo .
PHYSICS LETTERS A, 2007, 361 (06) :523-528
[6]   On the non-planar dust-ion-acoustic waves in cosmic dusty plasmas with transverse perturbations [J].
Gao, Yi-Tian ;
Tian, Bo .
EPL, 2007, 77 (01)
[7]   Cosmic dust-ion-acoustic waves, spherical modified Kadomtsev-Petviashvili model, and symbolic computation [J].
Gao, Yi-Tian ;
Tian, Bo .
PHYSICS OF PLASMAS, 2006, 13 (11)
[8]   Cylindrical Kadomtsev-Petviashvili model, nebulons and symbolic computation for cosmic dust ion-acoustic waves [J].
Gao, YT ;
Tian, B .
PHYSICS LETTERS A, 2006, 349 (05) :314-319
[9]   N-soliton solution and its Wronskian form of a (3+1)-dimensional nonlinear evolution equation [J].
Geng, Xianguo ;
Ma, Yunling .
PHYSICS LETTERS A, 2007, 369 (04) :285-289
[10]   Bifurcation of traveling wave solutions of (2+1) dimensional Konopelchenko-Dubrovsky equations [J].
He, Tian-lan .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 204 (02) :773-783