Volatile-Mediated Effects Predominate in Paraburkholderia phytofirmans Growth Promotion and Salt Stress Tolerance of Arabidopsis thaliana

被引:79
|
作者
Ledger, Thomas [1 ,2 ,3 ]
Rojas, Sandy [1 ]
Timmermann, Tania [1 ,2 ,3 ]
Pinedo, Ignacio [1 ]
Poupin, Maria J. [1 ,2 ,3 ]
Garrido, Tatiana [4 ]
Richter, Pablo [4 ]
Tamayo, Javier [1 ]
Donoso, Raul [1 ,2 ,3 ]
机构
[1] Univ Adolfo Ibanez, Fac Ingn & Ciencias, Lab Bioingn, Santiago, Chile
[2] Ctr Appl Ecol & Sustainabil, Santiago, Chile
[3] Millennium Nucl Ctr Plant Syst & Synthet Biol, Santiago, Chile
[4] Univ Chile, Fac Ciencias Quim & Farmaceut, Dept Quim Inorgan & Analit, Santiago, Chile
来源
关键词
plant growth promoting rhizobacteria (PGPR); Paraburkholderia phytofirmans PsJN; Arabidopsis thaliana; abiotic stress tolerance; ACC deaminase; volatile organic compounds (VOCs); BACTERIUM BURKHOLDERIA-PHYTOFIRMANS; WHEAT TRITICUM-AESTIVUM; PLANT-GROWTH; ACC-DEAMINASE; CHEMICAL DIVERSITY; SALINITY TOLERANCE; SYSTEMIC TOLERANCE; NA+ TRANSPORT; PSEUDOMONAS; RHIZOBACTERIA;
D O I
10.3389/fmicb.2016.01838
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Abiotic stress has a growing impact on plant growth and agricultural activity worldwide. Specific plant growth promoting rhizobacteria have been reported to stimulate growth and tolerance to abiotic stress in plants, and molecular mechanisms like phytohormone synthesis and 1-aminocyclopropane-1-carboxylate deamination are usual candidates proposed to mediate these bacterial effects. Paraburkholderia phytofirmans PsJN is able to promote growth of several plant hosts, and improve their tolerance to chilling, drought and salinity. This work investigated bacterial determinants involved in PsJN stimulation of growth and salinity tolerance in Arabidopsis thaliana, showing bacteria enable plants to survive long-term salinity treatment, accumulating less sodium within leaf tissues relative to non-inoculated controls. Inactivation of specific bacterial genes encoding ACC deaminase, auxin catabolism, N-acyl-homosenne-lactone production, and flagellin synthesis showed these functions have little influence on bacterial induction of salinity tolerance. Volatile organic compound emission from strain PsJN was shown to reproduce the effects of direct bacterial inoculation of roots, increasing plant growth rate and tolerance to salinity evaluated both in vitro and in soil. Furthermore, early exposure to VOCs from P phytofirmans was sufficient to stimulate long-term effects observed in Arabidopsis growth in the presence and absence of salinity. Organic compounds were analyzed in the headspace of PsJN cultures, showing production of 2-undecanone, 7-hexanol, 3-methylbutanol and dimethyl disulfide. Exposure of A. thaliana to different quantities of these molecules showed that they are able to influence growth in a wide range of added amounts. Exposure to a blend of the first three compounds was found to mimic the effects of PsJN on both general growth promotion and salinity tolerance. To our knowledge, this is the first report on volatile compound-mediated induction of plant abiotic stress tolerance by a Paraburkholderia species.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Volatile-mediated plant growth promotion by Fusarium oxysporum
    Bitas, V.
    Kang, S.
    Tumlinson, J. H.
    Bitas, K. M.
    McCartney, N.
    PHYTOPATHOLOGY, 2011, 101 (06) : S16 - S16
  • [2] Volatile-Mediated Killing of Arabidopsis thaliana by Bacteria Is Mainly Due to Hydrogen Cyanide
    Blom, Dirk
    Fabbri, Carlotta
    Eberl, Leo
    Weisskopf, Laure
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2011, 77 (03) : 1000 - 1008
  • [3] Plant Growth Promotion and Heat Stress Amelioration in Arabidopsis Inoculated with Paraburkholderia phytofirmans PsJN Rhizobacteria Quantified with the GrowScreen-Agar II Phenotyping Platform
    Macabuhay, Allene
    Arsova, Borjana
    Watt, Michelle
    Nagel, Kerstin A.
    Lenz, Henning
    Putz, Alexander
    Adels, Sascha
    Mueller-Linow, Mark
    Kelm, Jana
    Johnson, Alexander A. T.
    Walker, Robert
    Schaaf, Gabriel
    Roessner, Ute
    PLANTS-BASEL, 2022, 11 (21):
  • [4] Polyamines and salt stress response and tolerance in Arabidopsis thaliana flowers
    Tassoni, Annalisa
    Franceschetti, Marina
    Bagni, Nello
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2008, 46 (5-6) : 607 - 613
  • [5] Volatile organic compounds of some Trichoderma spp. increase growth and induce salt tolerance in Arabidopsis thaliana
    Jalali, Farnaz
    Zafari, Doustmorad
    Salari, Hooman
    FUNGAL ECOLOGY, 2017, 29 : 67 - 75
  • [6] BREVIPEDICELLUS Positively Regulates Salt-Stress Tolerance in Arabidopsis thaliana
    Cai, Huixian
    Xu, Yang
    Yan, Kang
    Zhang, Shizhong
    Yang, Guodong
    Wu, Changai
    Zheng, Chengchao
    Huang, Jinguang
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (02)
  • [7] Growth Promotion of Phaseolus vulgaris and Arabidopsis thaliana Seedlings by Streptomycetes Volatile Compounds
    Alonso Perez-Corral, Daniel
    de Jesus Ornelas-Paz, Jose
    Isela Olivas, Guadalupe
    Horacio Acosta-Muniz, Carlos
    Angel Salas-Marina, Miguel
    Ignacio Berlanga-Reyes, David
    Roberto Sepulveda, David
    Mares-Ponce de Leon, Yericka
    Rios-Velasco, Claudio
    PLANTS-BASEL, 2022, 11 (07):
  • [8] OsBTBZ1 Confers Salt Stress Tolerance in Arabidopsis thaliana
    Saputro, Triono B.
    Jakada, Bello H.
    Chutimanukul, Panita
    Comai, Luca
    Buaboocha, Teerapong
    Chadchawan, Supachitra
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (19)
  • [9] The enhancement of salt stress tolerance by salicylic acid pretreatment in Arabidopsis thaliana
    Yu, L-L
    Liu, Y.
    Zhu, F.
    Geng, X-X
    Yang, Y.
    He, Z-Q
    Xu, F.
    BIOLOGIA PLANTARUM, 2020, 64 : 150 - 158
  • [10] LeGRXS14 Reduces Salt Stress Tolerance in Arabidopsis thaliana
    Liu, Lulu
    Li, Xiaofei
    Su, Mengke
    Shi, Jiaping
    Zhang, Qing
    Liu, Xunyan
    PLANTS-BASEL, 2023, 12 (12):