Covering relations for coupled map networks

被引:1
作者
Bunimovich, Leonid [2 ]
Li, Ming-Chia [1 ]
Lyu, Ming-Jiea [1 ]
机构
[1] Natl Chiao Tung Univ, Dept Appl Math, Hsinchu 300, Taiwan
[2] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
关键词
Coupled map network; Covering relation; Topological entropy; Symbolic dynamics; Perturbation; Brouwer degree; ONE-DIMENSIONAL MAPS; MULTIDIMENSIONAL PERTURBATIONS; TOPOLOGICAL-ENTROPY; DYNAMICAL NETWORKS; SYNCHRONIZATION; TIME;
D O I
10.1016/j.jmaa.2012.06.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study coupled map networks over arbitrary finite graphs. An estimate from below for a topological entropy of a perturbed coupled map network is obtained via a topological entropy of an unperturbed network by making use of the covering relations for coupled map networks. The result is quite general; in particular, nonlinear coupling is allowed and no assumptions of hyperbolicity of the local dynamics are made. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:189 / 198
页数:10
相关论文
共 15 条
[1]   Dynamical networks: Continuous time and general discrete time models [J].
Afraimovich, V. S. ;
Bunimovich, L. A. ;
Moreno, S. V. .
REGULAR & CHAOTIC DYNAMICS, 2010, 15 (2-3) :127-145
[2]   Dynamical networks: interplay of topology, interactions and local dynamics [J].
Afraimovich, Valentin S. ;
Bunimovich, Leonid A. .
NONLINEARITY, 2007, 20 (07) :1761-1771
[3]  
[Anonymous], TOPOL METHODS NONLIN
[4]  
[Anonymous], 1999, STUDIES ADV MATH
[5]   Synchronization in discrete-time networks with general pairwise coupling [J].
Bauer, Frank ;
Atay, Fatihcan M. ;
Jost, Juergen .
NONLINEARITY, 2009, 22 (10) :2333-2351
[6]  
Chazottes J.-R., 2005, DYNAMICS COUPLED MAP
[7]   GLOBAL SYNCHRONIZATION IN TRANSLATION INVARIANT COUPLED MAP LATTICES [J].
Fernandez, Bastien .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2008, 18 (11) :3455-3459
[8]   Coupled map networks [J].
Koiller, Jose ;
Young, Lai-Sang .
NONLINEARITY, 2010, 23 (05) :1121-1141
[9]   Topological entropy for multidimensional perturbations of snap-back repellers and one-dimensional maps [J].
Li, Ming-Chia ;
Lyu, Ming-Jiea ;
Zgliczynski, Piotr .
NONLINEARITY, 2008, 21 (11) :2555-2567
[10]   Topological dynamics for multidimensional perturbations of maps with covering relations and Liapunov condition [J].
Li, Ming-Chia ;
Lyu, Ming-Jiea .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 250 (02) :799-812