An Incremental Sampling-based Algorithm for Stochastic Optimal Control

被引:0
作者
Vu Anh Huynh [1 ]
Karaman, Sertac [1 ]
Frazzoli, Emilio [1 ]
机构
[1] MIT, Lab Informat & Decis Syst, Cambridge, MA 02139 USA
来源
2012 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA) | 2012年
关键词
JACOBI-BELLMAN EQUATIONS; APPROXIMATION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we consider a class of continuous-time, continuous-space stochastic optimal control problems. Building upon recent advances in Markov chain approximation methods and sampling-based algorithms for deterministic path planning, we propose a novel algorithm called the incremental Markov Decision Process (iMDP) to compute incrementally control policies that approximate arbitrarily well an optimal policy in terms of the expected cost. The main idea behind the algorithm is to generate a sequence of finite discretizations of the original problem through random sampling of the state space. At each iteration, the discretized problem is a Markov Decision Process that serves as an incrementally refined model of the original problem. We show that with probability one, (i) the sequence of the optimal value functions for each of the discretized problems converges uniformly to the optimal value function of the original stochastic optimal control problem, and (ii) the original optimal value function can be computed efficiently in an incremental manner using asynchronous value iterations. Thus, the proposed algorithm provides an anytime approach to the computation of optimal control policies of the continuous problem. The effectiveness of the proposed approach is demonstrated on motion planning and control problems in cluttered environments in the presence of process noise.
引用
收藏
页码:2865 / 2872
页数:8
相关论文
共 27 条
  • [1] [Anonymous], ROBOTICS SCI SYSTEMS
  • [2] [Anonymous], INTELLIGENT ROBOTICS
  • [3] [Anonymous], ECONOMETRICA
  • [4] [Anonymous], INCREMENTAL SAMPLING
  • [5] [Anonymous], 2008, ROBOTICS SCI SYSTEMS
  • [6] [Anonymous], 2006, OPTIMAL CONTROL THEO
  • [7] [Anonymous], STOCHASTIC MODELLING
  • [8] A survey of computational complexity results in systems and control
    Blondel, VD
    Tsitsiklis, JN
    [J]. AUTOMATICA, 2000, 36 (09) : 1249 - 1274
  • [9] The finite element approximation of Hamilton-Jacobi-Bellman equations: the noncoercive case
    Boulbrachene, M
    Chentouf, B
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2004, 158 (02) : 585 - 592
  • [10] Boyd S., 2004, CONVEX OPTIMIZATION, VFirst, DOI DOI 10.1017/CBO9780511804441