Alleviation of salt stress in wheat seedlings by mammalian sex hormones

被引:43
|
作者
Erdal, Serkan [1 ]
机构
[1] Ataturk Univ, Dept Biol, Fac Sci, TR-25240 Erzurum, Turkey
关键词
salt stress; mammalian sex hormones; plant growth; antioxidant activity; wheat; SALICYLIC-ACID; OXIDATIVE STRESS; BETA-ESTRADIOL; PROGESTERONE; TOLERANCE; CHLORIDE; PLANTS; GERMINATION; INHIBITION; METABOLISM;
D O I
10.1002/jsfa.4716
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
BACKGROUND: Salinity is one of the most serious constraints facing agriculture today. Some mechanical, chemical and biological approaches are being pursued to cope with soil salinity. Although exogenously treated mammalian sex hormones (MSHs), progesterone, beta-estradiol and androsterone, activate significant effects in various biological aspects in plants growing under normal conditions, there is no report investigating their effects on plants growing under salt stress. The present study aimed to investigate whether MSHs could alleviate the destructive effect of salt stress on wheat seedlings and thereby increase their salt tolerance. Wheat leaves were sprayed with 10(-6), 10(-8) and 10(-10) mol L-1 concentrations of MSH on the ninth day after sowing. MSH-treated seedlings (10-day-old seedlings) were subjected to salt stress for 5 days (between days 10 and 15). RESULTS: At all the concentrations tested, MSH treatment provided a significant protection against to detrimental effects of salt stress in wheat seedlings. It improved dry weight, sugar, proline, protein, chlorophyll and glutathione contents in comparison to salinity alone. Similarly, superoxide dismutase, peroxidase, catalase, ascorbate peroxidase and nitrate reductase activities also were augmented by MSH treatment. On the other hand, increases in lipid peroxidation level, superoxide production and hydrogen peroxide content arising from salt treatment were reduced by MSH treatment. The highest salt tolerance was obtained at the concentrations of 10-6 mol L-1 for progesterone and 10(-8) mol L-1 for beta-estradiol and for androsterone. CONCLUSION: MSHs couldbeused effectively to protectwheat seedlings from thedestructive effectsof salt stress by stimulating both enzymatic and non-enzymatic antioxidantmechanism and by promoting levels of osmotic protectants such as proline and sugars resulting in osmotic adjustment, carbon storage and radical scavenging in plants. (c) 2011 Society of Chemical Industry
引用
收藏
页码:1411 / 1416
页数:6
相关论文
共 50 条
  • [41] Modulation of proline metabolism under drought and salt stress conditions in wheat seedlings
    Kaur, G.
    Asthir, B.
    Bains, N. S.
    INDIAN JOURNAL OF BIOCHEMISTRY & BIOPHYSICS, 2018, 55 (02): : 114 - 124
  • [42] CHARACTERIZATION OF MAMMALIAN SEX HORMONES IN THE INVERTEBRATES
    BOTTICELLI, CR
    HISAW, FL
    WOTIZ, HH
    FEDERATION PROCEEDINGS, 1960, 19 (01) : 167 - 167
  • [43] Effect of salt stress on the photosynthetic characteristics and endogenous hormones, and: A comprehensive evaluation of salt tolerance in Reaumuria soongorica seedlings
    Yan, Shipeng
    Chong, Peifang
    Zhao, Ming
    PLANT SIGNALING & BEHAVIOR, 2022, 17 (01)
  • [44] Effects of the timing of calcium application on the alleviation of salt stress in the maize, tall fescue, and reed canarygrass seedlings
    Maeda, Y.
    Nakazawa, R.
    BIOLOGIA PLANTARUM, 2008, 52 (01) : 153 - 156
  • [45] Salt stress alleviation by seed priming with silicon in lettuce seedlings: an approach based on enhancing antioxidant responses
    Alves, Rita de Cassia
    Malvas Nicolau, Mayara Cristina
    Checchio, Mirela Vantini
    Sousa Junior, Gilmar da Silveira
    de Oliveira, Francisco de Assis
    Prado, Renato Melo
    Gratao, Priscila Lupino
    BRAGANTIA, 2020, 79 (01) : 19 - 29
  • [46] Stress hormones and memory in humans: Is there an influence of sex or sex hormones?
    Wolf, OT
    Piel, M
    Hartmann, R
    Kuhlmann, S
    JOURNAL OF PSYCHOPHYSIOLOGY, 2005, 19 (02) : 154 - 154
  • [47] Alleviation of salt stress and expression of stress-responsive gene through the symbiosis of arbuscular mycorrhizal fungi with sour orange seedlings
    Hadian-Deljou, Marziyeh
    Esna-Ashari, Mahmood
    Mirzaie-asl, Asghar
    SCIENTIA HORTICULTURAE, 2020, 268
  • [48] Biomass, Gas Exchange and Chlorophyll Fluorescence in Wheat Seedlings under Salt and Alkali Stress
    Li, Xiaoyu
    Peng, Xiaoyuan
    Du, Zhixin
    Li, Shuxin
    Lin, Jixiang
    INTERNATIONAL JOURNAL OF AGRICULTURE AND BIOLOGY, 2020, 23 (04) : 751 - 756
  • [49] Application of nitric oxide and calcium nitrate enhances tolerance of wheat seedlings to salt stress
    Xianyi Tian
    Mingrong He
    Zhenlin Wang
    Jiwang Zhang
    Yiling Song
    Zhenli He
    Yuanjie Dong
    Plant Growth Regulation, 2015, 77 : 343 - 356
  • [50] High sensitivity of roots to salt stress as revealed by novel tip bioassay in wheat seedlings
    Nakamura, Chiharu
    Takenaka, Shotaro
    Nitta, Miyuki
    Yamamoto, Mikio
    Kawazoe, Tetsuya
    Ono, Shunsuke
    Takenaka, Motoki
    Inoue, Kazuma
    Takenaka, Shotaro
    Kawai, Shingo
    BIOTECHNOLOGY & BIOTECHNOLOGICAL EQUIPMENT, 2021, 35 (01) : 246 - 254