Generalized Cauchy difference equations. II

被引:20
作者
Ebanks, Bruce [1 ]
机构
[1] Mississippi State Univ, Dept Math & Stat, Mississippi State, MS 39762 USA
关键词
Cauchy difference; cocycle equation; functional independence; Pexider equation; implicit function theorem; philandering; regularity properties; functional equations;
D O I
10.1090/S0002-9939-08-09379-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main result is an improvement of previous results on the equation f(x) + f(y) - f(x + y) = g[phi f(x) + phi(y) - phi(x + y)] for a given function phi. We find its general solution assuming only continuous differentiability and local nonlinearity of phi. We also provide new results about the more general equation f(x) + f(y) - f(x + y) = g(H(x, y)) for a given function H. Previous uniqueness results required strong regularity assumptions on a particular solution f0, g0. Here we weaken the assumptions on f0, g0 considerably and find all solutions under slightly stronger regularity assumptions on H.
引用
收藏
页码:3911 / 3919
页数:9
相关论文
共 11 条
[1]  
Aczel J., 1987, SHORT COURS FUNCT EQ
[2]  
EBANKS B., 2002, RESULTS MATH, V42, P37
[3]  
Ebanks B., 2005, AEQUATIONES MATH, V70, P154, DOI DOI 10.1007/S00010-004-2739-5
[4]  
Ebanks B., 1992, GLAS MAT, V27, P251
[5]  
ECSEDI I, 1971, MAT LAPOK, V21, P369
[6]  
HEUVERS KJ, 1999, AEQUATIONES MATH, V58, P260, DOI DOI 10.1007/S000100050112
[7]  
Járai A, 2004, PUBL MATH DEBRECEN, V65, P381
[8]  
Jarai A., 2005, Regularity Properties of Functional Equations in Several Variables
[9]  
LAJKO K, 1974, PUBL MATH-DEBRECEN, V21, P39
[10]  
Maksa G., 1977, PUBL MATH-DEBRECEN, V24, P25