Wavelet-Based Classification of Hyperspectral Images Using Extended Morphological Profiles on Graphics Processing Units

被引:20
作者
Quesada-Barriuso, Pablo [1 ]
Argueello, Francisco [1 ]
Heras, Dora B. [1 ]
Benediktsson, Jon Atli [2 ]
机构
[1] Univ Santiago de Compostela, Ctr Invest Tecnol Informac, Santiago De Compostela 15842, Spain
[2] Univ Iceland, Fac Elect & Comp Engn, IS-107 Reykjavik, Iceland
关键词
Feature extraction; graphics processing unit (GPU); image classification; morphological operations; parallel processing; remote sensing; wavelet transforms; SPATIAL CLASSIFICATION;
D O I
10.1109/JSTARS.2015.2394778
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The availability of graphics processing units (GPUs) provides a low-cost solution to real-time processing, which may benefit many remote sensing applications. In this paper, a spectral-spatial classification scheme for hyperspectral images is specifically adapted for computing on GPUs. It is based on wavelets, extended morphological profiles (EMPs), and support vector machine (SVM). Additionally, a preprocessing stage is used to remove noise in the original hyperspectral image. The local computation of the techniques used in the proposed scheme makes them particularly suitable for parallel processing by blocks of threads in the GPU. Moreover, a block-asynchronous updating process is applied to the EMP to speedup the morphological reconstruction. The results over different hyperspectral images show that the execution can be speeded up to 8.2x compared to an efficient OpenMP parallel implementation, achieving real-time hyperspectral image classification while maintaining the high classification accuracy values of the original classification scheme.
引用
收藏
页码:2962 / 2970
页数:9
相关论文
共 35 条
[11]   Remote Sensing Processing: From Multicore to GPU [J].
Christophe, Emmanuel ;
Michel, Julien ;
Inglada, Jordi .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2011, 4 (03) :643-652
[12]  
Daubechies Ingrid, 1992, Soc. Ind. Appl. Math, V6, DOI 10.1063/1.4823127
[13]   DE-NOISING BY SOFT-THRESHOLDING [J].
DONOHO, DL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1995, 41 (03) :613-627
[14]  
Fauvel M., 2012, P IEEE, V101, P1
[15]   Spectral and Spatial Classification of Hyperspectral Data Using SVMs and Morphological Profiles [J].
Fauvel, Mathieu ;
Benediktsson, Jon Atli ;
Chanussot, Jocelyn ;
Sveinsson, Johannes R. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (11) :3804-3814
[16]   The 2D wavelet transform on emerging architectures: GPUs and multicores [J].
Franco, Joaquin ;
Bernabe, Gregorio ;
Fernandez, Juan ;
Ujaldon, Manuel .
JOURNAL OF REAL-TIME IMAGE PROCESSING, 2012, 7 (03) :145-152
[17]  
Galiano V, 2011, P INT C COMP MATH ME, P544
[18]   Use of FPGA or GPU-based architectures for remotely sensed hyperspectral image processing [J].
Gonzalez, Carlos ;
Sanchez, Sergio ;
Paz, Abel ;
Resano, Javier ;
Mozos, Daniel ;
Plaza, Antonio .
INTEGRATION-THE VLSI JOURNAL, 2013, 46 (02) :89-103
[19]   Support vector machines for hyperspectral remote sensing classification [J].
Gualtieri, JA ;
Cromp, RF .
ADVANCES IN COMPUTER-ASSISTED RECOGNITION, 1999, 3584 :221-232
[20]  
Heras D. B., 2011, Proceedings of the 2011 IEEE 6th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS 2011), P316, DOI 10.1109/IDAACS.2011.6072765