Wavelet-Based Classification of Hyperspectral Images Using Extended Morphological Profiles on Graphics Processing Units

被引:20
作者
Quesada-Barriuso, Pablo [1 ]
Argueello, Francisco [1 ]
Heras, Dora B. [1 ]
Benediktsson, Jon Atli [2 ]
机构
[1] Univ Santiago de Compostela, Ctr Invest Tecnol Informac, Santiago De Compostela 15842, Spain
[2] Univ Iceland, Fac Elect & Comp Engn, IS-107 Reykjavik, Iceland
关键词
Feature extraction; graphics processing unit (GPU); image classification; morphological operations; parallel processing; remote sensing; wavelet transforms; SPATIAL CLASSIFICATION;
D O I
10.1109/JSTARS.2015.2394778
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The availability of graphics processing units (GPUs) provides a low-cost solution to real-time processing, which may benefit many remote sensing applications. In this paper, a spectral-spatial classification scheme for hyperspectral images is specifically adapted for computing on GPUs. It is based on wavelets, extended morphological profiles (EMPs), and support vector machine (SVM). Additionally, a preprocessing stage is used to remove noise in the original hyperspectral image. The local computation of the techniques used in the proposed scheme makes them particularly suitable for parallel processing by blocks of threads in the GPU. Moreover, a block-asynchronous updating process is applied to the EMP to speedup the morphological reconstruction. The results over different hyperspectral images show that the execution can be speeded up to 8.2x compared to an efficient OpenMP parallel implementation, achieving real-time hyperspectral image classification while maintaining the high classification accuracy values of the original classification scheme.
引用
收藏
页码:2962 / 2970
页数:9
相关论文
共 35 条
[1]  
Abdelnour A. F., 2001, P IEEE INT C AC SPEE, V6, P3693
[2]  
[Anonymous], 2008, P 25 INT C MACH LEAR, DOI DOI 10.1145/1390156.1390170
[3]   The split-and-merge method in general purpose computation on GPUs [J].
Argueello, F. ;
Heras, D. B. ;
Boo, M. ;
Lamas-Rodriguez, J. .
PARALLEL COMPUTING, 2012, 38 (6-7) :277-288
[4]   Classification of hyperspectral data from urban areas based on extended morphological profiles [J].
Benediktsson, JA ;
Palmason, JA ;
Sveinsson, JR .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2005, 43 (03) :480-491
[5]   Classification of multisource and hyperspectral data based on decision fusion [J].
Benediktsson, JA ;
Kanellopoulos, I .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1999, 37 (03) :1367-1377
[6]   Very High-Resolution Remote Sensing: Challenges and Opportunities [J].
Benediktsson, Jon Atli ;
Chanussot, Jocelyn ;
Moon, Wooil M. .
PROCEEDINGS OF THE IEEE, 2012, 100 (06) :1907-1910
[7]   GPU Implementation of an Automatic Target Detection and Classification Algorithm for Hyperspectral Image Analysis [J].
Bernabe, Sergio ;
Lopez, Sebastian ;
Plaza, Antonio ;
Sarmiento, Roberto .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2013, 10 (02) :221-225
[8]   A new parallel tool for classification of remotely sensed imagery [J].
Bernabe, Sergio ;
Plaza, Antonio ;
Marpu, Prashanth Reddy ;
Benediktsson, Jon Atli .
COMPUTERS & GEOSCIENCES, 2012, 46 :208-218
[9]   Spectral-Spatial Classification of Hyperspectral Data Based on a Stochastic Minimum Spanning Forest Approach [J].
Bernard, Kevin ;
Tarabalka, Yuliya ;
Angulo, Jesus ;
Chanussot, Jocelyn ;
Benediktsson, Jon Atli .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2012, 21 (04) :2008-2021
[10]   LIBSVM: A Library for Support Vector Machines [J].
Chang, Chih-Chung ;
Lin, Chih-Jen .
ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2011, 2 (03)