Existence of inverse Jacobi multipliers around Hopf points in R3: Emphasis on the center problem

被引:33
作者
Buica, Adriana [2 ]
Garcia, Isaac A. [1 ]
Maza, Susanna [1 ]
机构
[1] Univ Lleida, Dept Matemat, Lleida 25001, Spain
[2] Univ Babes Bolyai, Dept Math, Cluj Napoca 400084, Romania
关键词
Inverse Jacobi multiplier; Center manifold; Center problem; CENTER MANIFOLDS; VECTOR-FIELDS; LU SYSTEM; EQUIVALENCE;
D O I
10.1016/j.jde.2012.03.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the center problem at Hopf points of analytic systems in R-3 that has a classical solution in the Lyapunov Center Theorem which is given in terms of an analytic first integral. Here we give a new solution in terms of an analytic inverse Jacobi multiplier V. The existence of a smooth and non-flat inverse Jacobi multiplier around a Hopf point of saddle-focus type is also proved. When studying these problems, we needed to discuss the relation between inverse Jacobi multipliers and center manifolds W-C, in particular to know under what conditions W-C subset of V-1(0). To illustrate our results, we solve the center problem for the Lu system. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:6324 / 6336
页数:13
相关论文
共 20 条
[1]  
[Anonymous], 1976, APPL MATH SCI
[2]  
BELITSKII GR, 1986, FUNCT ANAL APPL+, V20, P253
[3]   Inverse Jacobi multipliers [J].
Lucio R. Berrone ;
Hector Giacomini .
Rendiconti del Circolo Matematico di Palermo, 2003, 52 (1) :77-130
[4]  
BIBIKOV Y. N., 1979, Lecture Notes in Mathematics, V702
[5]   SMOOTH CONJUGACY OF CENTER MANIFOLDS [J].
BURCHARD, A ;
DENG, B ;
LU, KN .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1992, 120 :61-77
[7]   The center problem on a center manifold in R3 [J].
Edneral, Victor F. ;
Mahdi, Adam ;
Romanovski, Valery G. ;
Shafer, Douglas S. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (04) :2614-2622
[8]   Existence and vanishing set of inverse integrating factors for analytic vector fields [J].
Enciso, Alberto ;
Peralta-Salas, Daniel .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2009, 41 :1112-1124
[9]  
Garca IA., 2010, QUAL THEORY DYN SYST, V9, P115
[10]   THE INVERSE INTEGRATING FACTOR AND THE POINCARE MAP [J].
Garcia, Isaac A. ;
Giacomini, Hector ;
Grau, Maite .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 362 (07) :3591-3612