A Computationally Efficient Robust Model Predictive Control Framework for Uncertain Nonlinear Systems

被引:142
作者
Koehler, Johannes [1 ]
Soloperto, Raffaele [1 ]
Mueller, Matthias A. [2 ]
Allgoewer, Frank [1 ]
机构
[1] Univ Stuttgart, Inst Syst Theory & Automat Control, D-70550 Stuttgart, Germany
[2] Leibniz Univ Hannover, Inst Automat Control, D-30167 Hannover, Germany
关键词
Nonlinear model predictive control (MPC); robust MPC; constrained control; uncertain systems; MPC; STABILITY; SCHEME;
D O I
10.1109/TAC.2020.2982585
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this article, we present a nonlinear robust model predictive control (MPC) framework for general (state and input dependent) disturbances. This approach uses an online constructed tube in order to tighten the nominal (state and input) constraints. To facilitate an efficient online implementation, the shape of the tube is based on an offline computed incremental Lyapunov function with a corresponding (nonlinear) incrementally stabilizing feedback. Crucially, the online optimization only implicitly includes these nonlinear functions in terms of scalar bounds, which enables an efficient implementation. Furthermore, to account for an efficient evaluation of the worst case disturbance, a simple function is constructed offline that upper bounds the possible disturbance realizations in a neighborhood of a given point of the open-loop trajectory. The resulting MPC scheme ensures robust constraint satisfaction and practical asymptotic stability with a moderate increase in the online computational demand compared to a nominal MPC. We demonstrate the applicability of the proposed framework in comparison to state-of-the-art robust MPC approaches with a nonlinear benchmark example.
引用
收藏
页码:794 / 801
页数:8
相关论文
共 36 条
[1]   CasADi: a software framework for nonlinear optimization and optimal control [J].
Andersson, Joel A. E. ;
Gillis, Joris ;
Horn, Greg ;
Rawlings, James B. ;
Diehl, Moritz .
MATHEMATICAL PROGRAMMING COMPUTATION, 2019, 11 (01) :1-36
[2]   A Lyapunov approach to incremental stability properties [J].
Angeli, D .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2002, 47 (03) :410-421
[3]  
Bayer F, 2013, 2013 EUROPEAN CONTROL CONFERENCE (ECC), P2068
[4]   Tube-based Stochastic Nonlinear Model Predictive Control: A Comparative Study on Constraint Tightening [J].
Bonzanini, Angelo D. ;
Santos, Tito L. M. ;
Mesbah, Ali .
IFAC PAPERSONLINE, 2019, 52 (01) :598-603
[5]   Robust Model Predictive Control via Scenario Optimization [J].
Calafiore, Giuseppe C. ;
Fagiano, Lorenzo .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2013, 58 (01) :219-224
[6]   A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability [J].
Chen, H ;
Allgower, F .
AUTOMATICA, 1998, 34 (10) :1205-1217
[7]   Systems with persistent disturbances: predictive control with restricted constraints [J].
Chisci, L ;
Rossiter, JA ;
Zappa, G .
AUTOMATICA, 2001, 37 (07) :1019-1028
[8]   Getting Robustness Against Unstructured Uncertainty: A Tube-Based MPC Approach [J].
Falugi, Paola ;
Mayne, David Q. .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2014, 59 (05) :1290-1295
[9]   Robust Tube MPC for Linear Systems With Multiplicative Uncertainty [J].
Fleming, James ;
Kouvaritakis, Basil ;
Cannon, Mark .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2015, 60 (04) :1087-1092
[10]   Cautious Model Predictive Control Using Gaussian Process Regression [J].
Hewing, Lukas ;
Kabzan, Juraj ;
Zeilinger, Melanie N. .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2020, 28 (06) :2736-2743