ENZYME KINETICS AND COMPUTATIONAL MODELING FOR SYSTEMS BIOLOGY

被引:21
作者
Mendes, Pedro [1 ,2 ,4 ]
Messiha, Hanan [1 ,3 ]
Malys, Naglis [1 ,5 ]
Hoops, Stefan [4 ]
机构
[1] Univ Manchester, Manchester Ctr Integrat Syst Biol, Manchester, Lancs, England
[2] Univ Manchester, Sch Comp Sci, Manchester, Lancs, England
[3] Univ Manchester, Sch Chem, Manchester, Lancs, England
[4] Virginia Polytech Inst & State Univ, Virginia Bioinformat Inst, Blacksburg, VA 24061 USA
[5] Univ Manchester, Fac Life Sci, Manchester, Lancs, England
来源
METHODS IN ENZYMOLOGY: COMPUTER METHODS, PART B | 2009年 / 467卷
基金
英国生物技术与生命科学研究理事会;
关键词
BIOCHEMICAL PATHWAYS; PARAMETER-ESTIMATION; YEAST; OPTIMIZATION; INHIBITION; EQUATIONS; MARKUP; ERA;
D O I
10.1016/S0076-6879(09)67022-1
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Enzyme kinetics is a century-old area of biochemical research which is regaining popularity due to its use in systems biology. Computational models of biochemicat networks depend on rate laws and kinetic parameter values that describe the behavior of enzymes in the cellular milieu. While there is a considerable body of enzyme kinetic data available from the past several decades, a large number of enzymes of specific organisms were never assayed or were assayed in conditions that are irrelevant to those models. The result is that systems biology projects are having to carry out large numbers of enzyme kinetic assays. This chapter reviews the main methodologies of enzyme kinetic data analysis and proposes using computational modeling software for that purpose. It applies the biochemical network modeling software COPASI to data from enzyme assays of yeast triosephosphate isomerase (EC 5.3.1.1).
引用
收藏
页码:583 / 599
页数:17
相关论文
共 32 条
[1]  
Bergmeyer H., 1974, Methods Enzymatic Anal, V3, P1205
[2]  
CHANCE B, 1960, J BIOL CHEM, V235, P2426
[3]  
CORNISHBOWDEN A, 1986, FEBS LETT, V203, P3, DOI 10.1016/0014-5793(86)81424-7
[5]   DIRECT LINEAR PLOT - NEW GRAPHICAL PROCEDURE FOR ESTIMATING ENZYME KINETIC-PARAMETERS [J].
EISENTHAL, R ;
CORNISH-BOWDEN, A .
BIOCHEMICAL JOURNAL, 1974, 139 (03) :715-720
[6]  
Funahashi Akira, 2003, Biosilico, V1, P159, DOI 10.1016/S1478-5382(03)02370-9
[7]   Biochemical and genetic analysis of the yeast proteome with a movable ORF collection [J].
Gelperin, DM ;
White, MA ;
Wilkinson, ML ;
Kon, Y ;
Kung, LA ;
Wise, KJ ;
Lopez-Hoyo, N ;
Jiang, LX ;
Piccirillo, S ;
Yu, HY ;
Gerstein, M ;
Dumont, ME ;
Phizicky, EM ;
Snyder, M ;
Grayhack, EJ .
GENES & DEVELOPMENT, 2005, 19 (23) :2816-2826
[8]   Global analysis of protein expression in yeast [J].
Ghaemmaghami, S ;
Huh, W ;
Bower, K ;
Howson, RW ;
Belle, A ;
Dephoure, N ;
O'Shea, EK ;
Weissman, JS .
NATURE, 2003, 425 (6959) :737-741
[9]   EXACT STOCHASTIC SIMULATION OF COUPLED CHEMICAL-REACTIONS [J].
GILLESPIE, DT .
JOURNAL OF PHYSICAL CHEMISTRY, 1977, 81 (25) :2340-2361
[10]   A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology [J].
Herrgard, Markus J. ;
Swainston, Neil ;
Dobson, Paul ;
Dunn, Warwick B. ;
Arga, K. Yalcin ;
Arvas, Mikko ;
Bluethgen, Nils ;
Borger, Simon ;
Costenoble, Roeland ;
Heinemann, Matthias ;
Hucka, Michael ;
Le Novere, Nicolas ;
Li, Peter ;
Liebermeister, Wolfram ;
Mo, Monica L. ;
Oliveira, Ana Paula ;
Petranovic, Dina ;
Pettifer, Stephen ;
Simeonidis, Evangelos ;
Smallbone, Kieran ;
Spasic, Irena ;
Weichart, Dieter ;
Brent, Roger ;
Broomhead, David S. ;
Westerhoff, Hans V. ;
Kirdar, Betuel ;
Penttila, Merja ;
Klipp, Edda ;
Palsson, Bernhard O. ;
Sauer, Uwe ;
Oliver, Stephen G. ;
Mendes, Pedro ;
Nielsen, Jens ;
Kell, Douglas B. .
NATURE BIOTECHNOLOGY, 2008, 26 (10) :1155-1160