The Role of Carbon and Dysprosium in Ni[Dy]Si:C Contacts for Schottky-Barrier Height Reduction and Application in N-Channel MOSFETs With Si:C Source/Drain Stressors

被引:6
作者
Lee, Rinus Tek Po [1 ]
Koh, Alvin Tian-Yi [2 ]
Tan, Kian-Ming [2 ]
Liow, Tsung-Yang [3 ]
Chi, Dong Zhi [4 ]
Yeo, Yee-Chia [5 ]
机构
[1] Natl Univ Singapore, Silicon Nano Device Lab, Singapore 117576, Singapore
[2] Chartered Semicond Mfg Ltd, Singapore 738406, Singapore
[3] Inst Microelect, Singapore 117685, Singapore
[4] Inst Mat Res & Engn, Singapore 117602, Singapore
[5] ASTAR, Singapore 138632, Singapore
基金
新加坡国家研究基金会;
关键词
Dysprosium; FinFET; nickel silicide; Schottky barrier; silicon:carbon; SEGREGATION; RESISTANCE; FINFETS; METAL; TECHNOLOGY; SELENIUM; MUGFETS; ALLOYS;
D O I
10.1109/TED.2009.2030873
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We clarify the role of carbon and dysprosium in nickel-dysprosium-silicide (Ni[Dy] Si:C) contacts formed on silicon:carbon (Si1-yCy or Si:C) for Schottky-barrier height (SBH) reduction. Carbon-induced energy bandgap E-g narrowing and the segregation of dysprosium (Dy) at the Ni[Dy]Si:C/Si:C interface were shown to be responsible for SBH reduction in this paper. First, we show that electron barrier height (Phi(N)(B)) reduction of up to 69 meV (or 10.3%) for NiSi can be achieved with the scaling of substitutional carbon C-sub concentration from 0% to 1.0%. Second, new evidence revealing the segregation of Dy-based interlayer at the Ni[Dy]Si:C/Si:C interface and an additional 321 meV (or 53%) reduction in Phi(N)(B) for NiSi:C are presented. This could be due to charge transfer at the Ni[Dy]Si:C/Si:C interface. The successful modulation of Phi(N)(B) for Ni[Dy]S:C translates to an effective 41% reduction in device R-EXT, resulting in improved drive current performance. This opens new avenues to optimize the Si1-yCy contact interface for extending transistor performance in future technological generations.
引用
收藏
页码:2770 / 2777
页数:8
相关论文
共 46 条
[1]   Performance enhancement in uniaxial strained silicon-on-lnsulator N-MOSFETs featuring silicon-carbon source/drain regions [J].
Ang, Kah-Wee ;
Chui, King-Jien ;
Tung, Chih-Hang ;
Balasubramanian, Narayanan ;
Sarnudra, Ganesh S. ;
Yeo, Yee-Chia .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2007, 54 (11) :2910-2917
[2]  
Ang KW, 2004, IEEE INTERNATIONAL ELECTRON DEVICES MEETING 2004, TECHNICAL DIGEST, P1069
[3]  
[Anonymous], 2003, HDB CHEM PHYS
[4]  
[Anonymous], P S VLSI TECHN
[5]   Highly tensile strained silicon-carbon alloys epitaxially grown into recessed source drain areas of NMOS devices [J].
Bauer, Matthias ;
Machkaoutsan, Vladimir ;
Arena, Chantal .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2007, 22 (01) :S183-S187
[6]   Roughening mechanisms of tensily strained Si1-x-yGexCy films grown by UHV-CVD:: evidence of a carbon surface diffusion related mechanism [J].
Calmes, C ;
Bouchier, D ;
Clerc, C ;
Zheng, YL .
APPLIED SURFACE SCIENCE, 2004, 224 (1-4) :122-126
[7]   Energy band structure of strained Si1-xCx alloys on Si (001) substrate [J].
Chang, ST ;
Lin, CY ;
Liu, CW .
JOURNAL OF APPLIED PHYSICS, 2002, 92 (07) :3717-3723
[8]   CoSi2 formation in the presence of carbon [J].
Detavernier, C ;
Van Meirhaeghe, RL ;
Bender, H ;
Richard, O ;
Brijs, B ;
Maex, K .
JOURNAL OF APPLIED PHYSICS, 2002, 92 (03) :1207-1211
[9]  
Ducroquet F., 2006, ECS Trans, V3, P333, DOI [10.1149/1.2356293, DOI 10.1149/1.2356293]
[10]  
Ernst T., 2003, VLSI Symp. Tech. Digest, P51