Absolutely Maximally Entangled States of Seven Qubits Do Not Exist

被引:89
作者
Huber, Felix [1 ]
Guhne, Otfried [1 ]
Siewert, Jens [2 ,3 ]
机构
[1] Univ Siegen, Naturwissenschaftlich Tech Fak, D-57068 Siegen, Germany
[2] Univ Basque Country, UPV EHU, Dept Quim Fis, E-48080 Bilbao, Spain
[3] Ikerbasque, Basque Fdn Sci, E-48013 Bilbao, Spain
基金
瑞士国家科学基金会;
关键词
QUANTUM; ENUMERATORS;
D O I
10.1103/PhysRevLett.118.200502
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Pure multiparticle quantum states are called absolutely maximally entangled if all reduced states obtained by tracing out at least half of the particles are maximally mixed. We provide a method to characterize these states for a general multiparticle system. With that, we prove that a seven-qubit state whose three-body marginals are all maximally mixed, or equivalently, a pure ((7, 1, 4))(2) quantum error correcting code, does not exist. Furthermore, we obtain an upper limit on the possible number of maximally mixed three-body marginals and identify the state saturating the bound. This solves the seven-particle problem as the last open case concerning maximally entangled states of qubits.
引用
收藏
页数:5
相关论文
共 31 条
[1]   Exploring pure quantum states with maximally mixed reductions [J].
Arnaud, Ludovic ;
Cerf, Nicolas J. .
PHYSICAL REVIEW A, 2013, 87 (01)
[2]  
Bernal A., 2017, QUANT PHYS LETT, V6, P1
[3]   Multiqubit systems: highly entangled states and entanglement distribution [J].
Borras, A. ;
Plastino, A. R. ;
Batle, J. ;
Zander, C. ;
Casas, M. ;
Plastino, A. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (44) :13407-13421
[4]   Searching for highly entangled multi-qubit states [J].
Brown, IDK ;
Stepney, S ;
Sudbery, A ;
Braunstein, SL .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (05) :1119-1131
[5]   Quantum error correction via codes over GF (4) [J].
Calderbank, AR ;
Rains, EM ;
Shor, PW ;
Sloane, NJA .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (04) :1369-1387
[6]   Graph states of prime-power dimension from generalized CNOT quantum circuit [J].
Chen, Lin ;
Zhou, D. L. .
SCIENTIFIC REPORTS, 2016, 6
[7]   Monogamy Equalities for Qubit Entanglement from Lorentz Invariance [J].
Eltschka, Christopher ;
Siewert, Jens .
PHYSICAL REVIEW LETTERS, 2015, 114 (14)
[8]   Maximally Entangled Multipartite States: A Brief Survey [J].
Enriquez, M. ;
Wintrowicz, I. ;
Zyczkowski, K. .
QUANTUM FEST 2015, 2016, 698
[9]   Classical statistical mechanics approach to multipartite entanglement [J].
Facchi, P. ;
Florio, G. ;
Marzolino, U. ;
Parisi, G. ;
Pascazio, S. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (22)
[10]   Maximally multipartite entangled states [J].
Facchi, Paolo ;
Florio, Giuseppe ;
Parisi, Giorgio ;
Pascazio, Saverio .
PHYSICAL REVIEW A, 2008, 77 (06)