Graphene growth on Ge(100)/Si(100) substrates by CVD method

被引:80
作者
Pasternak, Iwona [1 ]
Wesolowski, Marek [1 ]
Jozwik, Iwona [1 ]
Lukosius, Mindaugas [2 ]
Lupina, Grzegorz [2 ]
Dabrowski, Pawel [3 ]
Baranowski, Jacek M. [1 ]
Strupinski, Wlodek [1 ]
机构
[1] Inst Elect Mat Technol, Wolczynska 133, PL-01919 Warsaw, Poland
[2] IHP, Technologiepk 25, D-15236 Frankfurt, Oder, Germany
[3] Univ Lodz, Dept Solid State Phys, Pomorska 149-153, PL-90236 Lodz, Poland
关键词
CHEMICAL-VAPOR-DEPOSITION; RAMAN-SPECTROSCOPY; EPITAXIAL GRAPHENE; SINGLE-LAYER; HIGH-QUALITY; GRAPHITE; DISORDER;
D O I
10.1038/srep21773
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The successful integration of graphene into microelectronic devices is strongly dependent on the availability of direct deposition processes, which can provide uniform, large area and high quality graphene on nonmetallic substrates. As of today the dominant technology is based on Si and obtaining graphene with Si is treated as the most advantageous solution. However, the formation of carbide during the growth process makes manufacturing graphene on Si wafers extremely challenging. To overcome these difficulties and reach the set goals, we proposed growth of high quality graphene layers by the CVD method on Ge(100)/Si(100) wafers. In addition, a stochastic model was applied in order to describe the graphene growth process on the Ge(100)/Si(100) substrate and to determine the direction of further processes. As a result, high quality graphene was grown, which was proved by Raman spectroscopy results, showing uniform monolayer films with FWHM of the 2D band of 32 cm(-1).
引用
收藏
页数:7
相关论文
共 35 条
[1]   Electronic confinement and coherence in patterned epitaxial graphene [J].
Berger, Claire ;
Song, Zhimin ;
Li, Xuebin ;
Wu, Xiaosong ;
Brown, Nate ;
Naud, Cecile ;
Mayou, Didier ;
Li, Tianbo ;
Hass, Joanna ;
Marchenkov, Atexei N. ;
Conrad, Edward H. ;
First, Phillip N. ;
de Heer, Wait A. .
SCIENCE, 2006, 312 (5777) :1191-1196
[2]   Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies [J].
Cancado, L. G. ;
Jorio, A. ;
Martins Ferreira, E. H. ;
Stavale, F. ;
Achete, C. A. ;
Capaz, R. B. ;
Moutinho, M. V. O. ;
Lombardo, A. ;
Kulmala, T. S. ;
Ferrari, A. C. .
NANO LETTERS, 2011, 11 (08) :3190-3196
[3]   Properties of Chemical Vapor Deposition Graphene Transferred by High-Speed Electrochemical Delamination [J].
Ciuk, Tymoteusz ;
Pasternak, Iwona ;
Krajewska, Aleksandra ;
Sobieski, Jan ;
Caban, Piotr ;
Szmidt, Jan ;
Strupinski, Wlodek .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (40) :20833-20837
[4]   Structural coherency of graphene on Ir(111) [J].
Coraux, Johann ;
N'Diaye, Alpha T. ;
Busse, Carsten ;
Michely, Thomas .
NANO LETTERS, 2008, 8 (02) :565-570
[5]   Epitaxial graphene [J].
de Heer, Walt A. ;
Berger, Claire ;
Wu, Xiaosong ;
First, Phillip N. ;
Conrad, Edward H. ;
Li, Xuebin ;
Li, Tianbo ;
Sprinkle, Michael ;
Hass, Joanna ;
Sadowski, Marcin L. ;
Potemski, Marek ;
Martinez, Gerard .
SOLID STATE COMMUNICATIONS, 2007, 143 (1-2) :92-100
[6]   Boron nitride substrates for high-quality graphene electronics [J].
Dean, C. R. ;
Young, A. F. ;
Meric, I. ;
Lee, C. ;
Wang, L. ;
Sorgenfrei, S. ;
Watanabe, K. ;
Taniguchi, T. ;
Kim, P. ;
Shepard, K. L. ;
Hone, J. .
NATURE NANOTECHNOLOGY, 2010, 5 (10) :722-726
[7]  
Di Lecce V., 2013, T ELECT DEV, V60
[8]  
EIZENBERG M, 1979, SURF SCI, V82, P228, DOI 10.1016/0039-6028(79)90330-3
[9]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)
[10]   Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects [J].
Ferrari, Andrea C. .
SOLID STATE COMMUNICATIONS, 2007, 143 (1-2) :47-57