A Rigidity Result of Spacelike Self-Shrinkers in Pseudo-Euclidean Spaces

被引:3
作者
Qiu, Hongbing [1 ,2 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
[2] Wuhan Univ, Hubei Key Lab Computat Sci, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
Self-Shrinker; Rigidity; Omori-Yau maximum principle; Pseudo-distance;
D O I
10.1007/s11401-021-0258-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the author proves that the spacelike self-shrinker which is closed with respect to the Euclidean topology must be flat under a growth condition on the mean curvature by using the Omori-Yau maximum principle.
引用
收藏
页码:291 / 296
页数:6
相关论文
共 17 条
[11]   Self-similar solutions to the mean curvature flow in the Minkowski plane R1, 1 [J].
Halldorsson, Hoeskuldur P. .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2015, 704 :209-243
[12]   On the entire self-shrinking solutions to Lagrangian mean curvature flow [J].
Huang, Rongli ;
Wang, Zhizhang .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2011, 41 (3-4) :321-339
[13]   Lagrangian mean curvature flow in pseudo-Euclidean space [J].
Huang, Rongli .
CHINESE ANNALS OF MATHEMATICS SERIES B, 2011, 32 (02) :187-200
[14]  
Jost J., 2001, Results Math., V40, P233
[15]   Some Results on Space-Like Self-Shrinkers [J].
Liu, Hua Qiao ;
Xin, Yuan Long .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2016, 32 (01) :69-82
[16]  
Xin, 2019, MINIMAL SUBMANIFOLDS
[17]   Mean Curvature Flow with Bounded Gauss Image [J].
Xin, Y. L. .
RESULTS IN MATHEMATICS, 2011, 59 (3-4) :415-436