A Rigidity Result of Spacelike Self-Shrinkers in Pseudo-Euclidean Spaces

被引:3
作者
Qiu, Hongbing [1 ,2 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
[2] Wuhan Univ, Hubei Key Lab Computat Sci, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
Self-Shrinker; Rigidity; Omori-Yau maximum principle; Pseudo-distance;
D O I
10.1007/s11401-021-0258-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the author proves that the spacelike self-shrinker which is closed with respect to the Euclidean topology must be flat under a growth condition on the mean curvature by using the Omori-Yau maximum principle.
引用
收藏
页码:291 / 296
页数:6
相关论文
共 17 条
  • [1] Spacelike self-similar shrinking solutions of the mean curvature flow in pseudo-Euclidean spaces
    Adames, Marcio Rostirolla
    [J]. COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2014, 22 (05) : 897 - 929
  • [2] Rigidity of entire self-shrinking solutions to curvature flows
    Chau, Albert
    Chen, Jingyi
    Yuan, Yu
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2012, 664 : 229 - 239
  • [3] Rigidity of self-shrinkers and translating solitons of mean curvature flows
    Chen, Qun
    Qiu, Hongbing
    [J]. ADVANCES IN MATHEMATICS, 2016, 294 : 517 - 531
  • [4] Chen Q, 2014, ANN GLOB ANAL GEOM, V46, P259, DOI 10.1007/s10455-014-9422-4
  • [5] MAXIMAL SPACE-LIKE HYPERSURFACES IN LORENTZ-MINKOWSKI SPACES
    CHENG, SY
    YAU, ST
    [J]. ANNALS OF MATHEMATICS, 1976, 104 (03) : 407 - 419
  • [6] Ding Q., 2010, ARXIV10120429V2
  • [7] The rigidity theorems for Lagrangian self-shrinkers
    Ding, Qi
    Xin, Yuanlong
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2014, 692 : 109 - 123
  • [8] ON MEAN-CURVATURE FLOW OF SPACELIKE HYPERSURFACES IN ASYMPTOTICALLY FLAT SPACETIMES
    ECKER, K
    [J]. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1993, 55 : 41 - 59
  • [9] Ecker K, 1997, J DIFFER GEOM, V46, P481
  • [10] Ecker K, 2003, COMMUN ANAL GEOM, V11, P181