On characteristic twists of multiple Dirichlet series associated to Siegel cusp forms

被引:1
作者
Imamoglu, Oezlem [1 ]
Martin, Yves [2 ]
机构
[1] Swiss Fed Inst Technol, Dept Math, CH-8096 Zurich, Switzerland
[2] Univ Chile, Fac Ciencias, Dept Matemat, Santiago, Chile
关键词
MODULAR-FORMS;
D O I
10.1007/s00209-008-0421-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define a twisted two complex variables Rankin-Selberg convolution of Siegel cusp forms of degree 2. We find its group of functional equations and prove its analytic continuation to C-2. As an application we obtain a non-vanishing result for special values of the Fourier Jacobi coefficients. We also prove the analytic properties for the characteristic twists of convolutions of Jacobi cusp forms.
引用
收藏
页码:345 / 368
页数:24
相关论文
共 17 条
[1]  
ANDRIANOV AN, 1995, MATH MONOGRAPHS AMS, V145
[2]   Non-vanishing of scalar products of Fourier-Jacobi coefficients of Siegel cusp forms [J].
Böcherer, S ;
Bruinier, JH ;
Kohnen, W .
MATHEMATISCHE ANNALEN, 1999, 313 (01) :1-13
[3]  
Bump D., 1997, AUTOMORPHIC FORMS RE
[4]  
CHRISTIAN U, 1983, LECT NOTES MATH, V1030
[5]  
Eichler M., 1985, The theory of Jacobi forms, V55
[6]  
Hormander L., 1966, An introduction to complex analysis in several variables
[7]   On a Rankin-Selberg convolution of two variables for Siegel modular forms [J].
Imamoglu, Ö ;
Martin, Y .
FORUM MATHEMATICUM, 2003, 15 (04) :565-589
[8]  
IWANIEC H, 1997, GSM AMS, V17
[9]  
KLINGEN H, 1990, INTRO LECT SIEGELMOD
[10]   A CERTAIN DIRICHLET SERIES ATTACHED TO SIEGEL MODULAR-FORMS OF DEGREE-2 [J].
KOHNEN, W ;
SKORUPPA, NP .
INVENTIONES MATHEMATICAE, 1989, 95 (03) :541-558