Thermoelectric performance of granular semiconductors

被引:16
|
作者
Glatz, Andreas [1 ]
Beloborodov, I. S. [2 ]
机构
[1] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA
[2] Calif State Univ Northridge, Dept Phys & Astron, Northridge, CA 91330 USA
来源
PHYSICAL REVIEW B | 2009年 / 80卷 / 24期
关键词
grain size; granular materials; nanostructured materials; semiconductor doping; semiconductor materials; thermoelectric power; DISORDERED SEMICONDUCTORS; SYSTEMS; DEVICES; POWER;
D O I
10.1103/PhysRevB.80.245440
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study the effects of doping and confinement on the thermoelectric properties of nanocrystalline semiconductors. We calculate the thermopower and figure of merit for temperatures less than the charging energy. For weakly coupled semiconducting grains it is shown that the figure of merit is optimized for grain sizes of order 5 nm for typical materials, and that its value can be larger than one. Using the similarities between granular semiconductors and electron or Coulomb glasses allows for a quantitative description of inhomogeneous semiconducting thermoelectrics.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Tuning band structure and texture for improved thermoelectric performance in BiSe
    Rao, Maolin
    Chen, Peihui
    Wang, Wenjun
    He, Zimin
    Wang, Shiyu
    Lai, Xiaofang
    Liu, Fusheng
    Jian, Jikang
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 958
  • [22] Impact of Self-Assembly Process Errors on Thermoelectric Performance
    Crane, Nathan B.
    McKnight, Patrick
    JOURNAL OF ELECTRONIC PACKAGING, 2012, 134 (03)
  • [23] Numerical simulation on thermoelectric and mechanical performance of annular thermoelectric generator
    Fan, Shifa
    Gao, Yuanwen
    ENERGY, 2018, 150 : 38 - 48
  • [24] Boosting the performance of printed thermoelectric materials by inducing morphological anisotropy
    Tian, Yuan
    Molina-Lopez, Francisco
    NANOSCALE, 2021, 13 (10) : 5202 - 5215
  • [25] Understanding the asymmetrical thermoelectric performance for discovering promising thermoelectric materials
    Zhu, Hangtian
    Mao, Jun
    Feng, Zhenzhen
    Su, Jifeng
    Zhu, Qing
    Liu, Zihang
    Singh, David J.
    Wang, Yumei
    Ren, Zhifeng
    SCIENCE ADVANCES, 2019, 5 (06):
  • [26] Superparamagnetic enhancement of thermoelectric performance
    Zhao, Wenyu
    Liu, Zhiyuan
    Sun, Zhigang
    Zhang, Qingjie
    Wei, Ping
    Mu, Xin
    Zhou, Hongyu
    Li, Cuncheng
    Ma, Shifang
    He, Danqi
    Ji, Pengxia
    Zhu, Wanting
    Nie, Xiaolei
    Su, Xianli
    Tang, Xinfeng
    Shen, Baogen
    Dong, Xiaoli
    Yang, Jihui
    Liu, Yong
    Shi, Jing
    NATURE, 2017, 549 (7671) : 247 - +
  • [27] Thermoelectric performance using counter-flowing thermal fluids
    Lu, Baiyi
    Meng, Xiangning
    Tian, Yue
    Zhu, Miaoyong
    Suzuki, Ryosuke O.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (32) : 20835 - 20842
  • [28] Thermoelectric performance of organic conductors
    Mori, Takehiko
    MATERIALS CHEMISTRY FRONTIERS, 2024, 8 (18) : 2995 - 3003
  • [29] The Combined Impacts of Leg Geometry Configuration and Multi-Staging on the Exergetic Performance of Thermoelectric Modules in a Solar Thermoelectric Generator
    Maduabuchi, Chika
    Singh, Sarveshwar
    Ozoegwu, Chigbogu
    Njoku, Howard
    Eke, Mkpamdi
    JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME, 2022, 144 (04):
  • [30] Prediction of thermoelectric performance for layered IV-V-VI semiconductors by high-throughput ab initio calculations and machine learning
    Gan, Yu
    Wang, Guanjie
    Zhou, Jian
    Sun, Zhimei
    NPJ COMPUTATIONAL MATERIALS, 2021, 7 (01)