Global asymptotics in some quasimonotone reaction-diffusion systems with delays

被引:53
作者
Freedman, HI
Zhao, XQ
机构
[1] Department of Mathematical Sciences, University of Alberta, Edmonton
基金
中国国家自然科学基金; 加拿大自然科学与工程研究理事会;
关键词
D O I
10.1006/jdeq.1997.3264
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Both dichotomy and trichotomy on the global asymptotics of some quasimonotone reaction-diffusion systems with delays are established in terms of the principal eigenvalue of linear weakly coupled elliptic systems. Applications to a class of delayed reaction-diffusion models of single species growth and to a reaction-diffusion system with delay, modelling the spread of bacterial infections, are provided. (C) 1997 Academic Press.
引用
收藏
页码:340 / 362
页数:23
相关论文
共 26 条
[1]   FIXED-POINT EQUATIONS AND NONLINEAR EIGENVALUE PROBLEMS IN ORDERED BANACH-SPACES [J].
AMANN, H .
SIAM REVIEW, 1976, 18 (04) :620-709
[2]  
BLAT J, 1986, MATH METHOD APPL SCI, V8, P234
[3]   CONVERGENCE TO EQUILIBRIUM STATES FOR A REACTION-DIFFUSION SYSTEM MODELING THE SPATIAL SPREAD OF A CLASS OF BACTERIAL AND VIRAL DISEASES [J].
CAPASSO, V ;
MADDALENA, L .
JOURNAL OF MATHEMATICAL BIOLOGY, 1981, 13 (02) :173-184
[4]  
CAPASSO V., 1993, Lecture Notes in Biomath, V97
[5]  
DANCER EN, 1991, J REINE ANGEW MATH, V419, P125
[6]   SEMI-LINEAR FUNCTIONAL-DIFFERENTIAL EQUATIONS IN BANACH-SPACE [J].
FITZGIBBON, WE .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1978, 29 (01) :1-14
[7]  
FREEDMAN HI, 1986, B MATH BIOL, V48, P485, DOI 10.1007/BF02462319
[8]  
Hale J., 1988, Asymptotic Behavior of Dissipative Systems
[9]   PERSISTENCE IN INFINITE-DIMENSIONAL SYSTEMS [J].
HALE, JK ;
WALTMAN, P .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1989, 20 (02) :388-395
[10]  
Hess P., 1991, Pitman Res. Notes in Mathematics