Robust photoelectrochemical cytosensor in biological media using antifouling property of zwitterionic peptide

被引:22
作者
Fan, Gao-Chao [1 ]
Li, Zimeng [1 ]
Lu, Yanwei [1 ]
Ma, Linzheng [1 ,2 ]
Zhao, Huan [1 ]
Luo, Xiliang [1 ]
机构
[1] Qingdao Univ Sci & Technol, Key Lab Opt Elect Sensing & Analyt Chem Life Sci, MOE, Coll Chem & Mol Engn, Qingdao 266042, Shandong, Peoples R China
[2] Shandong Univ Sci & Technol, Coll Chem & Environm Engn, Qingdao 266590, Shandong, Peoples R China
来源
SENSORS AND ACTUATORS B-CHEMICAL | 2019年 / 299卷
基金
中国国家自然科学基金;
关键词
Photoelectrochemistry; Cytosensor; Antifouling; Zwitterionic peptide; SIGNAL AMPLIFICATION; QUANTUM DOTS; STRATEGY; CELLS; PERFORMANCE; EFFICIENCY; APTAMER; SURFACE; ARRAYS;
D O I
10.1016/j.snb.2019.126996
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Resulting from nonspecific adsorption or obvious biofouling, target detection in real biological media is a potential challenge for most of the biosensors. Herein, we first report an antifouling photoelectrochemical (PEC) cytosensor by using zwitterionic peptide. The typical cervical carcinoma Henrietta Lacks (HeLa) cell was chosen as a target model and the aptamer AS1411 was used as its recognition element. TiO2 nanoparticles (NPs) and ZnIn2S4 nanocrystals (NCs) were modified in order on a bare indium-fin oxide (ITO), forming ITO/TiO2/ZnIn2S4 electrode as the PEC matrix to immobilize aptamer AS1411 and zwitterionic peptide. The fabricated PEC cytosensor exhibited a high sensitivity toward HeLa cell detection, with the detection limit of 34 cells/mL. Besides, owning to excellent antifouling property of the zwitterionic peptide, evidently reduced nonspecific adsorption of the cytosensor was realized in the biological media.
引用
收藏
页数:8
相关论文
共 35 条
[1]  
ASSAKER IB, 2015, APPL SURF SCI, V351, P927, DOI DOI 10.1016/j.apsusc.2015.06.038
[2]   Ultra-low fouling peptide surfaces derived from natural amino acids [J].
Chen, Shengfu ;
Cao, Zhiqiang ;
Jiang, Shaoyi .
BIOMATERIALS, 2009, 30 (29) :5892-5896
[3]   Enhanced Photoelectrochemical Immunosensing Platform Based on CdSeTe@CdS:Mn Core-Shell Quantum Dots-Sensitized TiO2 Amplified by CuS Nanocrystals Conjugated Signal Antibodies [J].
Fan, Gao-Chao ;
Zhu, Hua ;
Du, Dan ;
Zhang, Jian-Rong ;
Zhu, Jun-Jie ;
Lin, Yuehe .
ANALYTICAL CHEMISTRY, 2016, 88 (06) :3392-3399
[4]   A new signal amplification strategy of photoelectrochemical immunoassay for highly sensitive interleukin-6 detection based on TiO2/CdS/CdSe dual co-sensitized structure [J].
Fan, Gao-Chao ;
Ren, Xiao-Lin ;
Zhu, Cheng ;
Zhang, Jian-Rong ;
Zhu, Jun-Jie .
BIOSENSORS & BIOELECTRONICS, 2014, 59 :45-53
[5]   A graphene functionalized electrochemical aptasensor for selective label-free detection of cancer cells [J].
Feng, Lingyan ;
Chen, Yong ;
Ren, Jinsong ;
Qu, Xiaogang .
BIOMATERIALS, 2011, 32 (11) :2930-2937
[6]   Photoelectrochemical immunosensor for label-free detection and quantification of anti-cholera toxin antibody [J].
Haddour, Naoufel ;
Chauvin, Jerome ;
Gondran, Chantal ;
Cosnier, Serge .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (30) :9693-9698
[7]   High-efficiency photoelectrochemical electrodes based on ZnIn2S4 sensitized ZnO nanotube arrays [J].
Han, Jianhua ;
Liu, Zhifeng ;
Guo, Keying ;
Wang, Bo ;
Zhang, Xueqi ;
Hong, Tiantian .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2015, 163 :179-188
[8]   Paper-Based Device for Colorimetric and Photoelectrochemical Quantification of the Flux of H2O2 Releasing from MCF-7 Cancer Cells [J].
Li, Li ;
Zhang, Yan ;
Zhang, Lina ;
Ge, Shenguang ;
Liu, Haiyun ;
Ren, Na ;
Yan, Mei ;
Yu, Jinghua .
ANALYTICAL CHEMISTRY, 2016, 88 (10) :5369-5377
[9]   Near-Infrared Light Excited and Localized Surface Plasmon Resonance-Enhanced Photoelectrochemical Biosensing Platform for Cell Analysis [J].
Li, Ruyan ;
Tu, Wenwen ;
Wang, Huaisheng ;
Dai, Zhihui .
ANALYTICAL CHEMISTRY, 2018, 90 (15) :9403-9409
[10]   High-activity Fe3O4 nanozyme as signal amplifier: A simple, low-cost but efficient strategy for ultrasensitive photoelectrochemical immunoassay [J].
Li, Wenshi ;
Fan, Gao-Chao ;
Gao, Fengxian ;
Cui, Yige ;
Wang, Wei ;
Luo, Xiliang .
BIOSENSORS & BIOELECTRONICS, 2019, 127 :64-71