An a posteriori error estimate for the generalized finite element method for transient heat diffusion problems

被引:11
作者
Iqbal, Muhammad [1 ]
Gimperlein, Heiko [2 ,3 ,4 ]
Mohamed, M. Shadi [1 ]
Laghrouche, Omar [1 ]
机构
[1] Heriot Watt Univ, Inst Infrastruct & Environm, Edinburgh EH14 4AS, Midlothian, Scotland
[2] Heriot Watt Univ, Maxwell Inst Math Sci, Edinburgh EH14 4AS, Midlothian, Scotland
[3] Heriot Watt Univ, Dept Math, Edinburgh EH14 4AS, Midlothian, Scotland
[4] Univ Paderborn, Inst Math, Warburger Str 100, D-33098 Paderborn, Germany
基金
英国工程与自然科学研究理事会;
关键词
finite element methods; error estimation; thermal effects; adaptivity; extended finite element method; generalized finite element method; DISCONTINUOUS ENRICHMENT METHOD; WEAK VARIATIONAL FORMULATION; HELMHOLTZ-EQUATION; XFEM; PARTITION; RECOVERY; SCATTERING; FIELDS; WAVES; GLASS;
D O I
10.1002/nme.5440
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We propose the study of a posteriori error estimates for time-dependent generalized finite element simulations of heat transfer problems. A residual estimate is shown to provide reliable and practically useful upper bounds for the numerical errors, independent of the heuristically chosen enrichment functions. Two sets of numerical experiments are presented. First, the error estimate is shown to capture the decrease in the error as the number of enrichment functions is increased or the time discretization refined. Second, the estimate is used to predict the behaviour of the error where no exact solution is available. It also reflects the errors incurred in the poorly conditioned systems typically encountered in generalized finite element methods. Finally, we study local error indicators in individual time steps and elements of the mesh. This creates a basis towards the adaptive selection and refinement of the enrichment functions. Copyright (C) 2016 John Wiley & Sons, Ltd.
引用
收藏
页码:1103 / 1118
页数:16
相关论文
共 51 条
[1]  
Babuska I, 1997, INT J NUMER METH ENG, V40, P727, DOI 10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO
[2]  
2-N
[3]   Subdomain-based error techniques for generalized finite element approximations of problems with singular stress fields [J].
Barros, Felicio B. ;
de Barcellos, Clovis S. ;
Duarte, C. Armando ;
Torres, Diego A. F. .
COMPUTATIONAL MECHANICS, 2013, 52 (06) :1395-1415
[4]   Derivative recovery and a posteriori error estimate for extended finite elements [J].
Bordas, Stephane ;
Duflot, Marc .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 196 (35-36) :3381-3399
[5]   A simple error estimator for extended finite elements [J].
Bordas, Stephane ;
Duflot, Marc ;
Le, Phong .
COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 2008, 24 (11) :961-+
[6]   Application of an ultra weak variational formulation of elliptic PDEs to the two-dimensional Helmholtz problem [J].
Cessenat, O ;
Despres, B .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (01) :255-299
[7]   Analysis and applications of a generalized finite element method with global-local enrichment functions [J].
Duarte, C. A. ;
Kim, D. -J. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2008, 197 (6-8) :487-504
[8]   A posteriori error estimation for extended finite elements by an extended global recovery [J].
Duflot, Marc ;
Bordas, Stephane .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2008, 76 (08) :1123-1138
[9]   Numerical modelling of elastic wave scattering in frequency domain by the partition of unity finite element method [J].
El Kacimi, A. ;
Laghrouche, O. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2009, 77 (12) :1646-1669
[10]   Time-dependent simplified PN approximation to the equations of radiative transfer [J].
Frank, Martin ;
Klar, Axel ;
Larsen, Edward W. ;
Yasuda, Shugo .
JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 226 (02) :2289-2305