Artificial Intelligence to Assist in Exclusion of Coronary Atherosclerosis During CCTA Evaluation of Chest Pain in the Emergency Department: Preparing an Application for Real-world Use

被引:8
作者
White, Richard D. [1 ,2 ]
Erdal, Barbaros S. [2 ]
Demirer, Mutlu [2 ]
Gupta, Vikash [2 ]
Bigelow, Matthew T. [1 ]
Dikici, Engin [1 ]
Candemir, Sema [1 ]
Galizia, Mauricio S. [3 ]
Carpenter, Jessica L. [1 ]
O'Donnell, Thomas P. [4 ]
Halabi, Abdul H. [5 ]
Prevedello, Luciano M. [1 ]
机构
[1] Ohio State Univ, Coll Med, Dept Radiol, Columbus, OH 43210 USA
[2] Mayo Clin, Dept Radiol, 4500 San Pablo Rd, Jacksonville, FL 32224 USA
[3] Univ Iowa, Dept Radiol, Carver Coll Med, Iowa City, IA 52242 USA
[4] Siemens Healthineers, Malvern, PA 19355 USA
[5] NVIDIA Corp, Santa Clara, CA 95051 USA
关键词
Artificial intelligence; Chest pain; Coronary atherosclerosis; Coronary computed tomography angiography; COMPUTED-TOMOGRAPHY ANGIOGRAPHY; CT ANGIOGRAPHY; ARTERY-DISEASE; DIAGNOSTIC-ACCURACY; METAANALYSIS; RISK; PERFORMANCE; RADIOLOGY; OUTCOMES; ERROR;
D O I
10.1007/s10278-021-00441-6
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Coronary computed tomography angiography (CCTA) evaluation of chest pain patients in an emergency department (ED) is considered appropriate. While a "negative" CCTA interpretation supports direct patient discharge from an ED, labor-intensive analyses are required, with accuracy in jeopardy from distractions. We describe the development of an artificial intelligence (AI) algorithm and workflow for assisting qualified interpreting physicians in CCTA screening for total absence of coronary atherosclerosis. The two-phase approach consisted of (1) phase 1-development and preliminary testing of an algorithm for vessel-centerline extraction classification in a balanced study population (n = 500 with 50% disease prevalence) derived by retrospective random case selection, and (2) phase 2-simulated clinical Trialing of developed algorithm on a per-case (entire coronary artery tree) basis in a more "real-world" study population (n = 100 with 28% disease prevalence) from an ED chest pain series. This allowed pre-deployment evaluation of the AI-based CCTA screening application which provides vessel-by-vessel graphic display of algorithm inference results integrated into a clinically capable viewer. Algorithm performance evaluation used area under the receiver operating characteristic curve (AUC-ROC); confusion matrices reflected ground truth vs AI determinations. The vessel-based algorithm demonstrated strong performance with AUC-ROC = 0.96. In both phase 1 and phase 2, independent of disease prevalence differences, negative predictive values at the case level were very high at 95%. The rate of completion of the algorithm workflow process (96% with inference results in 55-80 s) in phase 2 depended on adequate image quality. There is potential for this AI application to assist in CCTA interpretation to help extricate atherosclerosis from chest pain presentations.
引用
收藏
页码:554 / 571
页数:18
相关论文
共 46 条
[1]   SCCT guidelines for the performance and acquisition of coronary computed tomographic angiography: A report of the society of Cardiovascular Computed Tomography Guidelines Committee Endorsed by the North American Society for Cardiovascular Imaging (NASCI) [J].
Abbara, Suhny ;
Blanke, Philipp ;
Maroules, Christopher D. ;
Cheezum, Michael ;
Choi, Andrew D. ;
Han, B. Kelly ;
Marwan, Mohamed ;
Naoum, Chris ;
Norgaard, Bjarne L. ;
Rubinshtein, Ronen ;
Schoenhagen, Paul ;
Villines, Todd ;
Leipsic, Jonathon .
JOURNAL OF CARDIOVASCULAR COMPUTED TOMOGRAPHY, 2016, 10 (06) :435-449
[2]   Testing of Low-Risk Patients Presenting to the Emergency Department With Chest Pain A Scientific Statement From the American Heart Association [J].
Amsterdam, Ezra A. ;
Kirk, J. Douglas ;
Bluemke, David A. ;
Diercks, Deborah ;
Farkouh, Michael E. ;
Garvey, J. Lee ;
Kontos, Michael C. ;
McCord, James ;
Miller, Todd D. ;
Morise, Anthony ;
Newby, L. Kristin ;
Ruberg, Frederick L. ;
Scordo, Kristine Anne ;
Thompson, Paul D. .
CIRCULATION, 2010, 122 (17) :1756-1776
[3]   Improved visualization of the coronary arteries using motion correction during vasodilator stress CT myocardial perfusion imaging [J].
Balaney, Bhavna ;
Vembar, Mani ;
Grass, Michael ;
Singh, Amita ;
Kawaji, Keigo ;
Landeras, Luis ;
Chung, Jonathan ;
Mor-Avi, Victor ;
Patel, Amit R. .
EUROPEAN JOURNAL OF RADIOLOGY, 2019, 114 :1-5
[4]   Understanding and Confronting Our Mistakes: The Epidemiology of Error in Radiology and Strategies for Error Reduction [J].
Bruno, Michael A. ;
Walker, Eric A. ;
Abujudeh, Hani H. .
RADIOGRAPHICS, 2015, 35 (06) :1668-1676
[5]  
Centers for Disease Control and Prevention, RAD YOUR HLTH ALARA
[6]   Coronary Atherosclerotic Precursors of Acute Coronary Syndromes [J].
Chang, Hyuk-Jae ;
Lin, Fay Y. ;
Lee, Sang-Eun ;
Andreini, Daniele ;
Bax, Jeroen ;
Cademartiri, Filippo ;
Chinnaiyan, Kavitha ;
Chow, Benjamin J. W. ;
Conte, Edoardo ;
Cury, Ricardo C. ;
Feuchtner, Gudrun ;
Hadamitzky, Martin ;
Kim, Yong-Jin ;
Leipsic, Jonathon ;
Maffei, Erica ;
Marques, Hugo ;
Plank, Fabian ;
Pontone, Gianluca ;
Raff, Gilbert L. ;
van Rosendael, Alexander R. ;
Villines, Todd C. ;
Weirich, Harald G. ;
Al'Aref, Subhi J. ;
Baskaran, Lohendran ;
Cho, Iksung ;
Danad, Ibrahim ;
Han, Donghee ;
Heo, Ran ;
Lee, Ji Hyun ;
Rivzi, Asim ;
Stuijfzand, Wijnand J. ;
Gransar, Heidi ;
Lu, Yao ;
Sung, Ji Min ;
Park, Hyung-Bok ;
Berman, Daniel S. ;
Budoff, Matthew J. ;
Samady, Habib ;
Shaw, Leslee J. ;
Stone, Peter H. ;
Virmani, Renu ;
Narula, Jagat ;
Min, James K. .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2018, 71 (22) :2511-2522
[7]   Deep Learning: A Primer for Radiologists [J].
Chartrand, Gabriel ;
Cheng, Phillip M. ;
Vorontsov, Eugene ;
Drozdzal, Michal ;
Turcotte, Simon ;
Pal, Christopher J. ;
Kadoury, Samuel ;
Tang, An .
RADIOGRAPHICS, 2017, 37 (07) :2113-2131
[8]   Current Applications and Future Impact of Machine Learning in Radiology [J].
Choy, Garry ;
Khalilzadeh, Omid ;
Michalski, Mark ;
Do, Synho ;
Samir, Anthony E. ;
Pianykh, Oleg S. ;
Geis, J. Raymond ;
Pandharipande, Pari V. ;
Brink, James A. ;
Dreyer, Keith J. .
RADIOLOGY, 2018, 288 (02) :318-328
[9]   Evaluation of coronary plaque characteristics with coronary computed tomography angiography in patients with non-obstructive coronary artery disease: a long-term follow-up study [J].
Conte, Edoardo ;
Annoni, Andrea ;
Pontone, Gianluca ;
Mushtaq, Saima ;
Guglielmo, Marco ;
Baggiano, Andrea ;
Volpato, Valentina ;
Agalbato, Cecilia ;
Bonomi, Alice ;
Veglia, Fabrizio ;
Formenti, Alberto ;
Fiorentini, Cesare ;
Bartorelli, Antonio L. ;
Pepi, Mauro ;
Andreini, Daniele .
EUROPEAN HEART JOURNAL-CARDIOVASCULAR IMAGING, 2017, 18 (10) :1170-1178
[10]   Perceptual and Interpretive Error in Diagnostic Radiology-Causes and Potential Solutions [J].
Degnan, Andrew J. ;
Ghobadi, Emily H. ;
Hardy, Peter ;
Krupinski, Elizabeth ;
Scali, Elena P. ;
Stratchko, Lindsay ;
Ulano, Adam ;
Walker, Eric ;
Wasnik, Ashish P. ;
Auffermann, William F. .
ACADEMIC RADIOLOGY, 2019, 26 (06) :833-845