Nonlinear instability in an ideal fluid

被引:120
作者
Friedlander, S
Strauss, W
Vishik, M
机构
[1] BROWN UNIV,DEPT MATH,PROVIDENCE,RI 02912
[2] UNIV TEXAS,DEPT MATH,AUSTIN,TX 78712
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 1997年 / 14卷 / 02期
基金
美国国家科学基金会;
关键词
Euler equations; essential spectrum;
D O I
10.1016/S0294-1449(97)80144-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Linearized instability implies nonlinear instability under certain rather general conditions. This abstract theorem is applied to the Euler equations governing the motion of an inviscid fluid. In particular this theorem applies to all 2D space periodic flows without stagnation points as well as 2D space-periodic shear flows.
引用
收藏
页码:187 / 209
页数:23
相关论文
共 24 条
[11]  
GUO Y, IN PRESS ANN IHP
[12]  
Kato T., 1968, ARCH RATION MECH AN, V27, P188
[13]   On an existence problem in hydrodynamics. Nonhomogeneous, unconnected, frictionless fluids [J].
Lichtenstein, L .
MATHEMATISCHE ZEITSCHRIFT, 1927, 26 :196-323
[16]  
LICHTENSTEIN L, 1927, MATH Z, V26, P387
[17]  
LICHTENSTEIN L, 1927, MATH Z, V26, P723
[18]  
LIU VXS, 1992, COMMUN PART DIFF EQ, V17, P1995
[19]  
Meshalkin L.D., 1961, PRIKL MAT MEKH, V25, P1140
[20]   RADIUS OF ESSENTIAL SPECTRUM [J].
NUSSBAUM, RD .
DUKE MATHEMATICAL JOURNAL, 1970, 37 (03) :473-&