STABLE SPLITTING OF POLYHARMONIC OPERATORS BY GENERALIZED STOKES SYSTEMS

被引:21
作者
Gallistl, Dietmar [1 ]
机构
[1] Karlsruhe Inst Technol, Inst Angew & Numer Math, Englerstr 2, D-76131 Karlsruhe, Germany
关键词
Finite element methods; Stokes system; mixed finite elements; polyharmonic equation; FINITE-ELEMENT METHODS; EIGENVALUE PROBLEMS; R-N; EQUATIONS; APPROXIMATION; PLATES;
D O I
10.1090/mcom/3208
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A stable splitting of 2m-th order elliptic partial differential equations into 2(m - 1) problems of Poisson type and one generalized Stokes problem is established for any space dimension d >= 2 and any integer m >= 1. This allows a numerical approximation with standard finite elements that are suited for the Poisson equation and the Stokes system, respectively. For some fourth- and sixth-order problems in two and three space dimensions, precise finite element formulations along with a priori error estimates and numerical experiments are presented.
引用
收藏
页码:2555 / 2577
页数:23
相关论文
共 32 条
[1]  
AMROUCHE C, 1992, PORTUGAL MATH, V0049, P00463
[2]   Vector and scalar potentials, Poincare's theorem and Korn's inequality [J].
Amrouche, Cherif ;
Ciarlet, Philippe G. ;
Ciarlet, Patrick, Jr. .
COMPTES RENDUS MATHEMATIQUE, 2007, 345 (11) :603-608
[3]   MIXED AND NONCONFORMING FINITE-ELEMENT METHODS - IMPLEMENTATION, POSTPROCESSING AND ERROR-ESTIMATES [J].
ARNOLD, DN ;
BREZZI, F .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1985, 19 (01) :7-32
[4]  
BAKER GA, 1977, MATH COMPUT, V31, P45, DOI 10.1090/S0025-5718-1977-0431742-5
[5]   Finite element approximation of a sixth order nonlinear degenerate parabolic equation [J].
Barrett, JW ;
Langdon, S ;
Nürnberg, R .
NUMERISCHE MATHEMATIK, 2004, 96 (03) :401-434
[6]  
Blum H., 1980, Math. Methods Appl. Sci, V2, P556, DOI 10.1002/mma.1670020416
[7]  
BOFFI D., 2013, Mixed Finite Element Methods and Applications, V44, DOI DOI 10.1007/978-3-642-36519-5
[8]  
Boffi D, 2010, ACTA NUMER, V19, P1, DOI 10.1017/S0962492910000012
[9]  
Braess Dietrich., 2007, FINITE ELEMENTS THEO, DOI DOI 10.1017/CBO9780511618635
[10]   C0 Interior Penalty Galerkin Method for Biharmonic Eigenvalue Problems [J].
Brenner, Susanne C. ;
Monk, Peter ;
Sun, Jiguang .
SPECTRAL AND HIGH ORDER METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS ICOSAHOM 2014, 2015, 106 :3-15