Powerful p-groups have non-inner automorphisms of order p and some cohomology

被引:28
作者
Abdollahi, Alireza [1 ,2 ]
机构
[1] Univ Isfahan, Dept Math, Esfahan 8174673441, Iran
[2] Inst Res Fundamental Sci IPM, Sch Math, Tehran, Iran
关键词
Automorphisms of p-groups; Finite p-groups; Non-inner automorphisms; Powerful p-groups; p-Central groups; NONINNER AUTOMORPHISMS; OUTER AUTOMORPHISMS; FINITE;
D O I
10.1016/j.jalgebra.2009.10.013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study the longstanding conjecture of whether there exists a non-inner automorphism of order p for a finite non-abelian p-group. We prove that if G is a finite non-abelian p-group such that G/Z(G) is powerful then G has a non-inner automorphism of order p leaving either Phi(G) or Omega(1)(Z(G)) elementwise fixed. We also recall a connection between the conjecture and a cohomological problem and we give an alternative proof of the latter result for odd p. by showing that the Tate cohomology H(n)(G/N, Z(N)) not equal 0 for all n >= 0, where G is a finite p-group, p is odd, G/Z(G) is p-central (i.e., elements of order p are central) and N (sic) G with G/N non-cyclic. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:779 / 789
页数:11
相关论文
共 13 条
[1]   Finite p-groups of class 2 have noninner automorphisms of order p [J].
Abdollahi, A. .
JOURNAL OF ALGEBRA, 2007, 312 (02) :876-879
[2]   Noninner automorphisms of order p of finite p-groups [J].
Deaconescu, M ;
Silberberg, G .
JOURNAL OF ALGEBRA, 2002, 250 (01) :283-287
[3]   NICHTABELSCHE P-GRUPPEN BESITZEN AUSSERE P-AUTOMORPHISMEN [J].
GASCHUTZ, W .
JOURNAL OF ALGEBRA, 1966, 4 (01) :1-&
[4]  
Gorenstein D., 1980, Finite Groups, V2nd
[5]  
Gruenberg K.W., 1970, LECT NOTES MATH, V143
[6]   Metacyclic groups [J].
Hempel, CE .
COMMUNICATIONS IN ALGEBRA, 2000, 28 (08) :3865-3897
[7]  
King B.W., 1973, Bull. Austral. Math. Soc, V8, P103, DOI [DOI 10.1017/S0004972700045500, 10.1017/S0004972700045500]
[8]  
LIEBECK H, 1965, J LONDON MATH SOC, V40, P268
[9]  
LONGOBARDI P, 1999, REND LINCEI-MAT APPL, V10, P11
[10]   POWERFUL P-GROUPS .1. FINITE-GROUPS [J].
LUBOTZKY, A ;
MANN, A .
JOURNAL OF ALGEBRA, 1987, 105 (02) :484-505