Generalizations of Hardy's Type Inequalities via Conformable Calculus

被引:13
作者
AlNemer, Ghada [1 ]
Kenawy, Mohammed [2 ,3 ]
Zakarya, Mohammed [4 ,5 ]
Cesarano, Clemente [6 ]
Rezk, Haytham M. [7 ]
机构
[1] Princess Nourah bint Abdul Rahman Univ, Coll Sci, Dept Math Sci, POB 105862, Riyadh 11656, Saudi Arabia
[2] Fayoum Univ, Fac Sci, Dept Math, Al Fayyum 63514, Egypt
[3] Acad Sci Res & Technol, 101 Kasr Al Aini ST, Cairo 11334, Egypt
[4] King Khalid Univ, Coll Sci, Dept Math, POB 9004, Abha 61413, Saudi Arabia
[5] Al Azhar Univ, Fac Sci, Dept Math, Assiut 71524, Egypt
[6] Univ Telemat Int Uninettuno, Sect Math, I-00186 Rome, Italy
[7] Al Azhar Univ, Fac Sci, Dept Math, Nasr City 11884, Egypt
来源
SYMMETRY-BASEL | 2021年 / 13卷 / 02期
关键词
Hardy's inequality; conformable fractional derivative; conformable fractional integral; Holder 's inequality;
D O I
10.3390/sym13020242
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we derive some new fractional extensions of Hardy's type inequalities. The corresponding reverse relations are also obtained by using the conformable fractional calculus from which the classical integral inequalities are deduced as special cases at alpha = 1.
引用
收藏
页码:1 / 13
页数:12
相关论文
共 23 条
[1]   On conformable fractional calculus [J].
Abdeljawad, Thabet .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 279 :57-66
[2]  
Akkurt A., 2017, Asian J. Math. Comput. Res, V15, P205
[3]   The best constant in a fractional Hardy inequality [J].
Bogdan, Krzysztof ;
Dyda, Bartlomiej .
MATHEMATISCHE NACHRICHTEN, 2011, 284 (5-6) :629-638
[4]   Inequalities for α-fractional differentiable functions [J].
Chu, Yu-Ming ;
Khan, Muhammad Adil ;
Ali, Tahir ;
Dragomir, Sever Silvestru .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
[5]  
Hardy G.H., 1928, MESSENGER MATH, V57, P12
[6]  
Hardy G.H., 1925, MESS MATH, V54, P150
[7]   Minimization problem related to a Lyapunov inequality [J].
Hashizume, Masato .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 432 (01) :517-530
[8]   LYAPUNOV-TYPE INEQUALITIES FOR A FRACTIONAL DIFFERENTIAL EQUATION WITH MIXED BOUNDARY CONDITIONS [J].
Jleli, Mohamed ;
Samet, Bessem .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2015, 18 (02) :443-451
[9]   A new definition of fractional derivative [J].
Khalil, R. ;
Al Horani, M. ;
Yousef, A. ;
Sababheh, M. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 264 :65-70
[10]  
Khan MB, 2017, ADV STRUCT MAT, V83, P1, DOI 10.1007/978-981-10-3842-6_1