Preparation of RGO/NiO Anode for Lithium-ion Batteries

被引:14
|
作者
Tian, Shiyi [1 ]
Zheng, Guoxu [2 ]
Liu, Qian [2 ]
Ren, Mingyuan [2 ]
Yin, Jinghua [1 ]
机构
[1] Harbin Univ Sci & Technol, Sch Sci, Harbin 150080, Heilongjiang, Peoples R China
[2] Harbin Univ Sci & Technol, Sch Software & Microelect, Harbin 150080, Heilongjiang, Peoples R China
来源
基金
黑龙江省自然科学基金; 中国博士后科学基金;
关键词
MOFs; RGO; NiO; LIBs; electrode materials; HOLLOW MICROSPHERES; GRAPHENE; NIO; STORAGE; NANOSTRUCTURES; FABRICATION; NANOSHEETS; NANOTUBES; ACID;
D O I
10.20964/2019.10.14
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
As an efficient and stable energy storage device, lithium-ion batteries (LIBs) have become an important part of today's society and are widely used in production and life. The research on the performance of LIBs is also widely concerned by researchers. The electrode material that plays a decisive role in the performance of the battery is our key research object, and many kinds of new negative electrode materials have been explored. Metal organic frameworks (MOFs) are a type of coordination polymers that have attracted wide attention in recent years [1-2]. With MOFs as the precursor, porous metal oxides and porous carbon materials with a controllable structure can be obtained. As electrode materials, they can significantly improve the electrochemical performance of batteries. Therefore, MOFs have become the preferred material of our new electrode materials. In this paper, hydrothermal method is adopted to prepare spherical porous Ni-MOFs material, which is calcined into metal oxide NiO material, and then its electrical conductivity and electrochemical performance are improved on the basis of retaining spherical pore structure. At the constant current density of 1C, the reversible capacity of NiO material maintains stably at 160mAh/g and the coulomb efficiency reaches 97.12% at 200 circles. In this paper, Ni-MOFs is synthesized with graphene oxide (GO) to generalize GO/Ni-MOFs material, and then it is transformed into reduced graphene oxide (RGO) to obtain RGO/NiO. RGO acts as a soft protective layer of active substances, which greatly improves the structural stability of the electrode during charging and discharging process. At the constant current density of 1C and at 200 circles, the reversible capacity reaches 440mAh/g, the coulomb efficiency reaches 99.49%, and its multiplying power and impedance performance are also very out.
引用
收藏
页码:9459 / 9467
页数:9
相关论文
共 50 条
  • [1] Fabrication of NiO-ZnO/RGO composite as an anode material for lithium-ion batteries
    Ma, Liang
    Pei, Xian-Yinan
    Mo, Dong-Chuan
    Lyu, Shu-Shen
    Fu, Yuan-Xiang
    CERAMICS INTERNATIONAL, 2018, 44 (18) : 22664 - 22670
  • [2] Enhanced anode performance of flower-like NiO/RGO nanocomposites for lithium-ion batteries
    Li, Xiaojia
    Fan, Linlin
    Li, Xifei
    Shan, Hui
    Chen, Chen
    Yan, Bo
    Xiong, Dongbin
    Li, Dejun
    MATERIALS CHEMISTRY AND PHYSICS, 2018, 217 : 547 - 552
  • [3] Facile fabrication of NiO flakes and reduced graphene oxide (NiO/RGO) composite as anode material for lithium-ion batteries
    Liang Ma
    Xian-Yinan Pei
    Dong-Chuan Mo
    Yi Heng
    Shu-Shen Lyu
    Yuan-Xiang Fu
    Journal of Materials Science: Materials in Electronics, 2019, 30 : 5874 - 5880
  • [4] Facile fabrication of NiO flakes and reduced graphene oxide (NiO/RGO) composite as anode material for lithium-ion batteries
    Ma, Liang
    Pei, Xian-Yinan
    Mo, Dong-Chuan
    Heng, Yi
    Lyu, Shu-Shen
    Fu, Yuan-Xiang
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2019, 30 (06) : 5874 - 5880
  • [5] Preparation of C/Ni–NiO composite nanofibers for anode materials in lithium-ion batteries
    Chenghao Luo
    Weili Lu
    Yu Li
    Yiyu Feng
    Wei Feng
    Yunhui Zhao
    Xiaoyan Yuan
    Applied Physics A, 2013, 113 : 683 - 692
  • [6] Hollow microspheres of NiO as anode materials for lithium-ion batteries
    Huang, X. H.
    Tu, J. P.
    Zhang, C. Q.
    Zhou, F.
    ELECTROCHIMICA ACTA, 2010, 55 (28) : 8981 - 8985
  • [7] NiO/Graphene Nanocomposite as Anode Material for Lithium-Ion Batteries
    Zhu, Yun-Guang
    Cao, Gao-Shao
    Xie, Jian
    Zhu, Tie-Jun
    Zhao, Xin-Bing
    NANOSCIENCE AND NANOTECHNOLOGY LETTERS, 2012, 4 (01) : 35 - 40
  • [8] Preparation of C/Ni-NiO composite nanofibers for anode materials in lithium-ion batteries
    Luo, Chenghao
    Lu, Weili
    Li, Yu
    Feng, Yiyu
    Feng, Wei
    Zhao, Yunhui
    Yuan, Xiaoyan
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2013, 113 (03): : 683 - 692
  • [9] Large-scale preparation of crinkly NiO layers as anode materials for lithium-ion batteries
    Zhao, Junfeng
    Shao, Ya
    Zha, Jiachen
    Wang, Haiying
    Yang, Yang
    Ruan, Shidong
    Yang, Gang
    Chen, Jianhua
    CERAMICS INTERNATIONAL, 2016, 42 (02) : 3479 - 3484
  • [10] Facile preparation of SGC composite as anode for lithium-ion batteries
    Yunjian Liu
    Huafeng Wan
    Shuai Liu
    Shengquan Zheng
    Aichun Dou
    Mingru Su
    Ionics, 2018, 24 : 2575 - 2581