Dark matter scattering cross section and dynamics in dark Yang-Mills theory

被引:19
|
作者
Yamanaka, Nodoka [1 ,2 ]
Iida, Hideaki [3 ]
Nakamura, Atsushi [4 ,5 ,6 ]
Wakayama, Masayuki [5 ,7 ,8 ,9 ]
机构
[1] Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 6068502, Japan
[2] Univ Massachusetts, Dept Phys, Amherst Ctr Fundamental Interact, Amherst, MA 01003 USA
[3] Univ Tokyo, Dept Phys, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1130033, Japan
[4] Far Eastern Fed Univ, Pacific Quantum Ctr, Sukhanova 8, Vladivostok 690950, Russia
[5] Osaka Univ, Res Ctr Nucl Phys, Ibaraki, Osaka 5670047, Japan
[6] RIKEN, Theoret Res Div, Nishina Ctr, Wako, Saitama 3510198, Japan
[7] Kokushikan Univ, Sch Sci & Engn, Tokyo 1548515, Japan
[8] Korea Univ, Ctr Extreme Nucl Matters CENuM, Seoul 02841, South Korea
[9] Pukyong Natl Univ PKNU, Dept Phys, Busan 48513, South Korea
基金
新加坡国家研究基金会;
关键词
LARGE-SCALE STRUCTURE; LATTICE GAUGE-THEORY; COSMOLOGICAL SIMULATIONS; GLUEBALL MASS; STATES; GALAXIES; PHYSICS; MILKY; VIEW; QCD;
D O I
10.1016/j.physletb.2020.136056
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We calculate for the first time the scattering cross section between lightest glueballs in SU (2) pure Yang-Mills theory, which are good candidates of dark matter. In the first step, we evaluate the interglueball potential on lattice using the HAL QCD method, with several lattice spacings (beta = 2.1, 2.2, 2.3, 2.4, and 2.5). The systematics associated with nonzero angular momentum effect is removed by subtracting the centrifugal force. The statistical accuracy is improved by employing the cluster-decomposition error reduction technique and by using all space-time symmetries. We then determine the low energy glueball effective Lagrangian and the scattering cross section at low energy, which is compared with the observational constraint on the dark matter self-scattering. We derive the lower bound on the scale parameter of the SU (2) Yang-Mills theory, as A > 60 MeV. (C) 2020 The Author(s). Published by Elsevier B.V.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] On the gluonic operator effective potential in holographic Yang-Mills theory
    Kiritsis, Elias
    Li, Wenliang
    Nitti, Francesco
    JOURNAL OF HIGH ENERGY PHYSICS, 2015, (04):
  • [42] Open fishchain in N=4 Supersymmetric Yang-Mills Theory
    Gromov, Nikolay
    Julius, Julius
    Primi, Nicolo
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (07)
  • [43] Three-point correlation functions in Yang-Mills theory
    Pelaez, Marcela
    Tissier, Matthieu
    Wschebor, Nicolas
    PHYSICAL REVIEW D, 2013, 88 (12):
  • [44] QCD Theory of the Hadrons and Filling the Yang-Mills Mass Gap
    Yablon, Jay R.
    SYMMETRY-BASEL, 2020, 12 (11): : 1 - 28
  • [45] The exact decomposition of gauge variables in lattice Yang-Mills theory
    Shibata, Akihiro
    Kondo, Kei-Ichi
    Shinohara, Toni
    PHYSICS LETTERS B, 2010, 691 (02) : 91 - 98
  • [46] Equation of state of two-dimensional Yang-Mills theory
    Karthik, Nikhil
    Narayanan, Rajamani
    PHYSICAL REVIEW D, 2014, 90 (12):
  • [47] Covariant variational approach to Yang-Mills theory at finite temperatures
    Quandt, M.
    Reinhardt, H.
    PHYSICAL REVIEW D, 2015, 92 (02):
  • [48] Implementing Gauss's law in Yang-Mills theory and QCD
    Belloni, M
    Chen, LS
    Haller, K
    PHYSICS LETTERS B, 1996, 373 (1-3) : 185 - 192
  • [49] Disordered fermions, extra dimensions, and a solvable Yang-Mills theory
    Borici, Artan
    PHYSICAL REVIEW D, 2019, 100 (03)
  • [50] Mass generation in Landau-gauge Yang-Mills theory
    Eichmann, Gernot
    Pawlowski, Jan M.
    Silva, Joao M.
    PHYSICAL REVIEW D, 2021, 104 (11)