Dark matter scattering cross section and dynamics in dark Yang-Mills theory

被引:19
|
作者
Yamanaka, Nodoka [1 ,2 ]
Iida, Hideaki [3 ]
Nakamura, Atsushi [4 ,5 ,6 ]
Wakayama, Masayuki [5 ,7 ,8 ,9 ]
机构
[1] Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 6068502, Japan
[2] Univ Massachusetts, Dept Phys, Amherst Ctr Fundamental Interact, Amherst, MA 01003 USA
[3] Univ Tokyo, Dept Phys, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1130033, Japan
[4] Far Eastern Fed Univ, Pacific Quantum Ctr, Sukhanova 8, Vladivostok 690950, Russia
[5] Osaka Univ, Res Ctr Nucl Phys, Ibaraki, Osaka 5670047, Japan
[6] RIKEN, Theoret Res Div, Nishina Ctr, Wako, Saitama 3510198, Japan
[7] Kokushikan Univ, Sch Sci & Engn, Tokyo 1548515, Japan
[8] Korea Univ, Ctr Extreme Nucl Matters CENuM, Seoul 02841, South Korea
[9] Pukyong Natl Univ PKNU, Dept Phys, Busan 48513, South Korea
基金
新加坡国家研究基金会;
关键词
LARGE-SCALE STRUCTURE; LATTICE GAUGE-THEORY; COSMOLOGICAL SIMULATIONS; GLUEBALL MASS; STATES; GALAXIES; PHYSICS; MILKY; VIEW; QCD;
D O I
10.1016/j.physletb.2020.136056
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We calculate for the first time the scattering cross section between lightest glueballs in SU (2) pure Yang-Mills theory, which are good candidates of dark matter. In the first step, we evaluate the interglueball potential on lattice using the HAL QCD method, with several lattice spacings (beta = 2.1, 2.2, 2.3, 2.4, and 2.5). The systematics associated with nonzero angular momentum effect is removed by subtracting the centrifugal force. The statistical accuracy is improved by employing the cluster-decomposition error reduction technique and by using all space-time symmetries. We then determine the low energy glueball effective Lagrangian and the scattering cross section at low energy, which is compared with the observational constraint on the dark matter self-scattering. We derive the lower bound on the scale parameter of the SU (2) Yang-Mills theory, as A > 60 MeV. (C) 2020 The Author(s). Published by Elsevier B.V.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Stringent constraints on the dark matter annihilation cross section from the region of the Galactic Center
    Hooper, Dan
    Kelso, Chris
    Queiroz, Farinaldo S.
    ASTROPARTICLE PHYSICS, 2013, 46 : 55 - 70
  • [32] Relating Gribov-Zwanziger theory to effective Yang-Mills theory
    Upadhyay, Sudhaker
    Mandal, Bhabani Prasad
    EPL, 2011, 93 (03)
  • [33] Speed of sound in the QGP and an SU(3) Yang-Mills theory
    Khaidukov, Z. V.
    Lukashov, M. S.
    Simonov, Yu. A.
    PHYSICAL REVIEW D, 2018, 98 (07)
  • [34] Theory of dark matter superfluidity
    Berezhiani, Lasha
    Khoury, Justin
    PHYSICAL REVIEW D, 2015, 92 (10):
  • [35] On the gluonic operator effective potential in holographic Yang-Mills theory
    Elias Kiritsis
    Wenliang Li
    Francesco Nitti
    Journal of High Energy Physics, 2015
  • [36] Renormalization of the Yang-Mills theory in the ambiguity-free gauge
    Quadri, A.
    Slavnov, A. A.
    JOURNAL OF HIGH ENERGY PHYSICS, 2010, (07):
  • [37] Quantum field theory of interacting dark matter and dark energy: Dark monodromies
    D'Amico, Guido
    Hamill, Teresa
    Kaloper, Nemanja
    PHYSICAL REVIEW D, 2016, 94 (10)
  • [38] Gluon condensation and scaling exponents for the propagators in Yang-Mills theory
    Eichhorn, Astrid
    Gies, Holger
    Pawlowski, Jan M.
    PHYSICAL REVIEW D, 2011, 83 (04):
  • [39] Hyperbolic Lattices and Two-Dimensional Yang-Mills Theory
    Shankar, G.
    Maciejko, Joseph
    PHYSICAL REVIEW LETTERS, 2024, 133 (14)
  • [40] Renormalization of the Yang-Mills theory in the ambiguity-free gauge
    A. Quadri
    A. A. Slavnov
    Journal of High Energy Physics, 2010