Dark matter scattering cross section and dynamics in dark Yang-Mills theory

被引:19
|
作者
Yamanaka, Nodoka [1 ,2 ]
Iida, Hideaki [3 ]
Nakamura, Atsushi [4 ,5 ,6 ]
Wakayama, Masayuki [5 ,7 ,8 ,9 ]
机构
[1] Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 6068502, Japan
[2] Univ Massachusetts, Dept Phys, Amherst Ctr Fundamental Interact, Amherst, MA 01003 USA
[3] Univ Tokyo, Dept Phys, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1130033, Japan
[4] Far Eastern Fed Univ, Pacific Quantum Ctr, Sukhanova 8, Vladivostok 690950, Russia
[5] Osaka Univ, Res Ctr Nucl Phys, Ibaraki, Osaka 5670047, Japan
[6] RIKEN, Theoret Res Div, Nishina Ctr, Wako, Saitama 3510198, Japan
[7] Kokushikan Univ, Sch Sci & Engn, Tokyo 1548515, Japan
[8] Korea Univ, Ctr Extreme Nucl Matters CENuM, Seoul 02841, South Korea
[9] Pukyong Natl Univ PKNU, Dept Phys, Busan 48513, South Korea
基金
新加坡国家研究基金会;
关键词
LARGE-SCALE STRUCTURE; LATTICE GAUGE-THEORY; COSMOLOGICAL SIMULATIONS; GLUEBALL MASS; STATES; GALAXIES; PHYSICS; MILKY; VIEW; QCD;
D O I
10.1016/j.physletb.2020.136056
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We calculate for the first time the scattering cross section between lightest glueballs in SU (2) pure Yang-Mills theory, which are good candidates of dark matter. In the first step, we evaluate the interglueball potential on lattice using the HAL QCD method, with several lattice spacings (beta = 2.1, 2.2, 2.3, 2.4, and 2.5). The systematics associated with nonzero angular momentum effect is removed by subtracting the centrifugal force. The statistical accuracy is improved by employing the cluster-decomposition error reduction technique and by using all space-time symmetries. We then determine the low energy glueball effective Lagrangian and the scattering cross section at low energy, which is compared with the observational constraint on the dark matter self-scattering. We derive the lower bound on the scale parameter of the SU (2) Yang-Mills theory, as A > 60 MeV. (C) 2020 The Author(s). Published by Elsevier B.V.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Spectrum of Yang-Mills theory in 3 and 4 dimensions
    Frasca, Marco
    NUCLEAR AND PARTICLE PHYSICS PROCEEDINGS, 2018, 294 : 124 - 128
  • [22] Infrared singularities in Landau gauge Yang-Mills theory
    Alkofer, Reinhard
    Huber, Markus Q.
    Schwenzer, Kai
    PHYSICAL REVIEW D, 2010, 81 (10)
  • [23] On the infrared behavior of Landau gauge Yang-Mills theory
    Fischer, Christian S.
    Maas, Axel
    Pawlowski, Jan M.
    ANNALS OF PHYSICS, 2009, 324 (11) : 2408 - 2437
  • [24] Vacuum energy density in the quantum Yang-Mills theory
    Barnafoeldi, G. G.
    Gogokhia, V.
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2010, 37 (02)
  • [25] Hamiltonian flow in Coulomb gauge Yang-Mills theory
    Leder, Markus
    Pawlowski, Jan M.
    Reinhardt, Hugo
    Weber, Axel
    PHYSICAL REVIEW D, 2011, 83 (02):
  • [26] Correlation functions of Landau gauge Yang-Mills theory
    Huber, Markus Q.
    PHYSICAL REVIEW D, 2020, 101 (11):
  • [27] Is Yang-Mills theory unitary in fractional spacetime dimensions?
    Jin, Qingjun
    Ren, Ke
    Yang, Gang
    Yu, Rui
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2024, 67 (07)
  • [28] Towards the fundamental spectrum of the quantum Yang-Mills theory
    Liegener, Klaus
    Thiemann, Thomas
    PHYSICAL REVIEW D, 2016, 94 (02)
  • [29] Dark matter superfluidity and galactic dynamics
    Berezhiani, Lasha
    Khoury, Justin
    PHYSICS LETTERS B, 2016, 753 : 639 - 643
  • [30] Growth of the nonbaryonic dark matter theory
    Peebles, P. J. E.
    NATURE ASTRONOMY, 2017, 1 (03):