Dark matter scattering cross section and dynamics in dark Yang-Mills theory

被引:19
|
作者
Yamanaka, Nodoka [1 ,2 ]
Iida, Hideaki [3 ]
Nakamura, Atsushi [4 ,5 ,6 ]
Wakayama, Masayuki [5 ,7 ,8 ,9 ]
机构
[1] Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 6068502, Japan
[2] Univ Massachusetts, Dept Phys, Amherst Ctr Fundamental Interact, Amherst, MA 01003 USA
[3] Univ Tokyo, Dept Phys, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1130033, Japan
[4] Far Eastern Fed Univ, Pacific Quantum Ctr, Sukhanova 8, Vladivostok 690950, Russia
[5] Osaka Univ, Res Ctr Nucl Phys, Ibaraki, Osaka 5670047, Japan
[6] RIKEN, Theoret Res Div, Nishina Ctr, Wako, Saitama 3510198, Japan
[7] Kokushikan Univ, Sch Sci & Engn, Tokyo 1548515, Japan
[8] Korea Univ, Ctr Extreme Nucl Matters CENuM, Seoul 02841, South Korea
[9] Pukyong Natl Univ PKNU, Dept Phys, Busan 48513, South Korea
基金
新加坡国家研究基金会;
关键词
LARGE-SCALE STRUCTURE; LATTICE GAUGE-THEORY; COSMOLOGICAL SIMULATIONS; GLUEBALL MASS; STATES; GALAXIES; PHYSICS; MILKY; VIEW; QCD;
D O I
10.1016/j.physletb.2020.136056
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We calculate for the first time the scattering cross section between lightest glueballs in SU (2) pure Yang-Mills theory, which are good candidates of dark matter. In the first step, we evaluate the interglueball potential on lattice using the HAL QCD method, with several lattice spacings (beta = 2.1, 2.2, 2.3, 2.4, and 2.5). The systematics associated with nonzero angular momentum effect is removed by subtracting the centrifugal force. The statistical accuracy is improved by employing the cluster-decomposition error reduction technique and by using all space-time symmetries. We then determine the low energy glueball effective Lagrangian and the scattering cross section at low energy, which is compared with the observational constraint on the dark matter self-scattering. We derive the lower bound on the scale parameter of the SU (2) Yang-Mills theory, as A > 60 MeV. (C) 2020 The Author(s). Published by Elsevier B.V.
引用
收藏
页数:5
相关论文
共 50 条
  • [11] Renormalization in an interpolating gauge in Yang-Mills theory
    Andrasi, A.
    Taylor, J. C.
    ANNALS OF PHYSICS, 2020, 422
  • [12] String tensions in deformed Yang-Mills theory
    Poppitz, Erich
    Shalchian, M. Erfan T.
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (01):
  • [13] Improved Hamiltonian for Minkowski Yang-Mills theory
    Moore, GD
    NUCLEAR PHYSICS B, 1996, 480 (03) : 689 - 726
  • [14] Glueballs at finite temperature in SU(3) Yang-Mills theory
    Meng, Xiang-Fei
    Li, Gang
    Zhang, Yuan-Jiang
    Chen, Ying
    Liu, Chuan
    Liu, Yu-Bin
    Ma, Jian-Ping
    Zhang, Jian-Bo
    PHYSICAL REVIEW D, 2009, 80 (11):
  • [15] The phase diagram of Yang-Mills theory with a compact extra dimension
    de Forcrand, Philippe
    Kurkela, Aleksi
    Panero, Marco
    JOURNAL OF HIGH ENERGY PHYSICS, 2010, (06):
  • [16] Self-scattering for Dark Matter with an excited state
    Schutz, Katelin
    Slatyer, Tracy R.
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2015, (01):
  • [17] Reconciliation of modified Newtonian dynamics and dark matter theory
    Chan, Man Ho
    PHYSICAL REVIEW D, 2013, 88 (10):
  • [18] Nonperturbative finite-temperature Yang-Mills theory
    Cyrol, Anton K.
    Mitter, Mario
    Pawlowski, Jan M.
    Strodthoff, Nils
    PHYSICAL REVIEW D, 2018, 97 (05)
  • [19] High orders perturbation theory and dual models for Yang-Mills theories
    Zakharov, Valentin
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2010, 207-08 : 306 - 311
  • [20] Dihedral symmetry in SU (N) Yang-Mills theory
    Aitken, Kyle
    Cherman, Aleksey
    Unsal, Mithat
    PHYSICAL REVIEW D, 2019, 100 (08)