Dark matter scattering cross section and dynamics in dark Yang-Mills theory

被引:19
|
作者
Yamanaka, Nodoka [1 ,2 ]
Iida, Hideaki [3 ]
Nakamura, Atsushi [4 ,5 ,6 ]
Wakayama, Masayuki [5 ,7 ,8 ,9 ]
机构
[1] Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 6068502, Japan
[2] Univ Massachusetts, Dept Phys, Amherst Ctr Fundamental Interact, Amherst, MA 01003 USA
[3] Univ Tokyo, Dept Phys, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1130033, Japan
[4] Far Eastern Fed Univ, Pacific Quantum Ctr, Sukhanova 8, Vladivostok 690950, Russia
[5] Osaka Univ, Res Ctr Nucl Phys, Ibaraki, Osaka 5670047, Japan
[6] RIKEN, Theoret Res Div, Nishina Ctr, Wako, Saitama 3510198, Japan
[7] Kokushikan Univ, Sch Sci & Engn, Tokyo 1548515, Japan
[8] Korea Univ, Ctr Extreme Nucl Matters CENuM, Seoul 02841, South Korea
[9] Pukyong Natl Univ PKNU, Dept Phys, Busan 48513, South Korea
基金
新加坡国家研究基金会;
关键词
LARGE-SCALE STRUCTURE; LATTICE GAUGE-THEORY; COSMOLOGICAL SIMULATIONS; GLUEBALL MASS; STATES; GALAXIES; PHYSICS; MILKY; VIEW; QCD;
D O I
10.1016/j.physletb.2020.136056
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We calculate for the first time the scattering cross section between lightest glueballs in SU (2) pure Yang-Mills theory, which are good candidates of dark matter. In the first step, we evaluate the interglueball potential on lattice using the HAL QCD method, with several lattice spacings (beta = 2.1, 2.2, 2.3, 2.4, and 2.5). The systematics associated with nonzero angular momentum effect is removed by subtracting the centrifugal force. The statistical accuracy is improved by employing the cluster-decomposition error reduction technique and by using all space-time symmetries. We then determine the low energy glueball effective Lagrangian and the scattering cross section at low energy, which is compared with the observational constraint on the dark matter self-scattering. We derive the lower bound on the scale parameter of the SU (2) Yang-Mills theory, as A > 60 MeV. (C) 2020 The Author(s). Published by Elsevier B.V.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Consequences of multiple axions in theories with dark Yang-Mills groups
    Ettengruber, Manuel
    Koutsangelas, Emmanouil
    PHYSICAL REVIEW D, 2025, 111 (03)
  • [2] The lattice and quantized Yang-Mills theory
    Creutz, Michael
    MODERN PHYSICS LETTERS A, 2015, 30 (36)
  • [3] Dark baryon from pure Yang-Mills theory and its GW signature from cosmic strings
    Yamada, Masaki
    Yonekura, Kazuya
    JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (09)
  • [4] Dark matter models with suppressed dark matter nuclei elastic cross section
    Krasnikov, N. V.
    PHYSICS LETTERS B, 2024, 854
  • [5] Higgs-portal scalar dark matter: Scattering cross section and observable limits
    Han, Huayong
    Zheng, Sibo
    NUCLEAR PHYSICS B, 2017, 914 : 248 - 256
  • [6] Realistic scattering of puffy dark matter
    Wang, Wenyu
    Xu, Wu-Long
    Zhu, Bin
    PHYSICAL REVIEW D, 2022, 105 (07)
  • [7] Supersymmetric Yang-Mills theory on the lattice
    Montvay, I
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2002, 17 (18): : 2377 - 2412
  • [8] Beyond collisionless dark matter: Particle physics dynamics for dark matter halo structure
    Tulin, Sean
    Yu, Hai-Bo
    Zurek, Kathryn M.
    PHYSICAL REVIEW D, 2013, 87 (11):
  • [9] Covariant variational approach to Yang-Mills theory: Thermodynamics
    Quandt, M.
    Reinhardt, H.
    PHYSICAL REVIEW D, 2017, 96 (05)
  • [10] Dark matter from strong dynamics: the minimal theory of dark baryons
    Francis, Anthony
    Hudspith, Renwick J.
    Lewis, Randy
    Tulin, Sean
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (12):