Blueprint for a microwave trapped ion quantum computer

被引:192
作者
Lekitsch, Bjoern [1 ]
Weidt, Sebastian [1 ]
Fowler, Austin G. [2 ]
Molmer, Klaus [3 ]
Devitt, Simon J. [4 ]
Wunderlich, Christof [5 ]
Hensinger, Winfried K. [1 ]
机构
[1] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England
[2] Google Inc, Santa Barbara, CA 93117 USA
[3] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark
[4] RIKEN, Ctr Emergent Matter Sci, Wako, Saitama 3150198, Japan
[5] Univ Siegen, Dept Phys, Nat Wissenschaftlich Tech Fak, D-57068 Siegen, Germany
来源
SCIENCE ADVANCES | 2017年 / 3卷 / 02期
基金
英国工程与自然科学研究理事会; 日本学术振兴会;
关键词
GATES;
D O I
10.1126/sciadv.1601540
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The availability of a universal quantum computer may have a fundamental impact on a vast number of research fields and on society as a whole. An increasingly large scientific and industrial community is working toward the realization of such a device. An arbitrarily large quantum computer may best be constructed using a modular approach. We present a blueprint for a trapped ion-based scalable quantum computer module, making it possible to create a scalable quantum computer architecture based on long-wavelength radiation quantum gates. The modules control all operations as stand-alone units, are constructed using silicon microfabrication techniques, and are within reach of current technology. To perform the required quantum computations, the modules make use of long-wavelength radiation-based quantum gate technology. To scale this microwave quantum computer architecture to a large size, we present a fully scalable design that makes use of ion transport between different modules, thereby allowing arbitrarily many modules to be connected to construct a large-scale device. A high error-threshold surface error correction code can be implemented in the proposed architecture to execute fault-tolerant operations. With appropriate adjustments, the proposed modules are also suitable for alternative trapped ion quantum computer architectures, such as schemes using photonic interconnects.
引用
收藏
页数:11
相关论文
共 51 条
  • [1] Universal gate-set for trapped-ion qubits using a narrow linewidth diode laser
    Akerman, Nitzan
    Navon, Nir
    Kotler, Shlomi
    Glickman, Yinnon
    Ozeri, Roee
    [J]. NEW JOURNAL OF PHYSICS, 2015, 17
  • [2] Toward scalable ion traps for quantum information processing
    Amini, J. M.
    Uys, H.
    Wesenberg, J. H.
    Seidelin, S.
    Britton, J.
    Bollinger, J. J.
    Leibfried, D.
    Ospelkaus, C.
    VanDevender, A. P.
    Wineland, D. J.
    [J]. NEW JOURNAL OF PHYSICS, 2010, 12
  • [3] Fidelity Quantum Logic Gates Using Trapped-Ion Hyperfine Qubits
    Ballance, C. J.
    Harty, T. P.
    Linke, N. M.
    Sepiol, M. A.
    Lucas, D. M.
    [J]. PHYSICAL REVIEW LETTERS, 2016, 117 (06)
  • [4] Ultrasensitive Magnetometer using a Single Atom
    Baumgart, I.
    Cai, J. -M.
    Retzker, A.
    Plenio, M. B.
    Wunderlich, Ch.
    [J]. PHYSICAL REVIEW LETTERS, 2016, 116 (24)
  • [5] Entangled states of trapped atomic ions
    Blatt, Rainer
    Wineland, David
    [J]. NATURE, 2008, 453 (7198) : 1008 - 1015
  • [6] Coherent Diabatic Ion Transport and Separation in a Multizone Trap Array
    Bowler, R.
    Gaebler, J.
    Lin, Y.
    Tan, T. R.
    Hanneke, D.
    Jost, J. D.
    Home, J. P.
    Leibfried, D.
    Wineland, D. J.
    [J]. PHYSICAL REVIEW LETTERS, 2012, 109 (08)
  • [7] Single-qubit-gate error below 10-4 in a trapped ion
    Brown, K. R.
    Wilson, A. C.
    Colombe, Y.
    Ospelkaus, C.
    Meier, A. M.
    Knill, E.
    Leibfried, D.
    Wineland, D. J.
    [J]. PHYSICAL REVIEW A, 2011, 84 (03):
  • [8] Multi-qubit gate with trapped ions for microwave and laser-based implementation
    Cohen, I.
    Weidt, S.
    Hensinger, W. K.
    Retzker, A.
    [J]. NEW JOURNAL OF PHYSICS, 2015, 17
  • [9] Transparent ion trap with integrated photodetector
    Eltony, Amira M.
    Wang, Shannon X.
    Akselrod, Gleb M.
    Herskind, Peter F.
    Chuang, Isaac L.
    [J]. APPLIED PHYSICS LETTERS, 2013, 102 (05)
  • [10] Surface codes: Towards practical large-scale quantum computation
    Fowler, Austin G.
    Mariantoni, Matteo
    Martinis, John M.
    Cleland, Andrew N.
    [J]. PHYSICAL REVIEW A, 2012, 86 (03)