Pyrrole as a promising electrolyte additive to trap polysulfides for lithium-sulfur batteries

被引:99
|
作者
Yang, Wu [1 ,2 ]
Yang, Wang [1 ]
Song, Ailing [1 ]
Gao, Lijun [1 ]
Sun, Gang [1 ]
Shao, Guangjie [1 ,2 ]
机构
[1] Yanshan Univ, State Key Lab Metastable Mat Sci & Technol, Qinhuangdao 066004, Peoples R China
[2] Yanshan Univ, Coll Environm & Chem Engn, Hebei Key Lab Appl Chem, Qinhuangdao 066004, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium sulfur batteries; Electrolyte additive; Pyrrole; Polysulfides trapping; ELECTROCHEMICAL PERFORMANCE; SEPARATOR; ANODE; STABILITY; CAPACITY; CATHODES; LINO3;
D O I
10.1016/j.jpowsour.2017.03.008
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium sulfur batteries are a promising energy storage devices beyond conventional lithium ion batteries. However, the "shuttle effect" of soluble polysulfides is a major barrier between electrodes, resulting in rapid capacity fading. To address above issue, pyrrole has been investigated as an electrolyte additive to trap polysulfides. When pyrrole is added into electrolyte, a surface protective layer of polypyrrole can be formed on the sulfur cathode, which not only acts as a conductive agent to provide an effective electron conduction path but also acts as an absorbing agent and barrier layer suppressing the diffusion of polysulfide intermediates. The results demonstrate that an appropriate amount of pyrrole added into the electrolyte leads to excellent cycling stability and rate capability. Apparently, pyrrole is an effective additive for the entrapment of polysulfides of lithium-sulfur batteries. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:175 / 182
页数:8
相关论文
共 50 条
  • [21] Role of Polysulfides in Self-Healing Lithium-Sulfur Batteries
    Xu, Rui
    Belharouak, Ilias
    Li, James C. M.
    Zhang, Xiaofeng
    Bloom, Ira
    Bareno, Javier
    ADVANCED ENERGY MATERIALS, 2013, 3 (07) : 833 - 838
  • [22] Oxidation process of polysulfides in charge process for lithium-sulfur batteries
    Xiong, Shizhao
    Xie, Kai
    Diao, Yan
    Hong, Xiaobin
    IONICS, 2012, 18 (09) : 867 - 872
  • [23] Size Effect for Inhibiting Polysulfides Shuttle in Lithium-Sulfur Batteries
    Kang, Xiaoya
    He, Tianqi
    Zou, Rong
    Niu, Shengtao
    Ma, Yingxia
    Zhu, Fuliang
    Ran, Fen
    SMALL, 2024, 20 (08)
  • [24] Application of diatomite as an effective polysulfides adsorbent for lithium-sulfur batteries
    Zhong Li
    Nan Zhang
    Yubao Sun
    Hanzhong Ke
    Hansong Cheng
    Journal of Energy Chemistry, 2017, 26 (06) : 1267 - 1275
  • [25] Application of diatomite as an effective polysulfides adsorbent for lithium-sulfur batteries
    Li, Zhong
    Zhang, Nan
    Sun, Yubao
    Ke, Hanzhong
    Cheng, Hansong
    JOURNAL OF ENERGY CHEMISTRY, 2017, 26 (06) : 1267 - 1275
  • [26] Application of diatomite as an effective polysulfides adsorbent for lithium-sulfur batteries
    Zhong Li
    Nan Zhang
    Yubao Sun
    Hanzhong Ke
    Hansong Cheng
    Journal of Energy Chemistry, 2017, (06) : 1267 - 1275
  • [27] Electrolyte solutions design for lithium-sulfur batteries
    Liu, Yatao
    Elias, Yuval
    Meng, Jiashen
    Aurbach, Doron
    Zou, Ruqiang
    Xia, Dingguo
    Pang, Quanquan
    JOULE, 2021, 5 (09) : 2323 - 2364
  • [28] ZIF-8 derived hollow carbon to trap polysulfides for high performance lithium-sulfur batteries
    Rana, Masud
    Kim, Jeonghum
    Peng, Lingyi
    Qiu, He
    Kaiser, Rejaul
    Ran, Lingbing
    Hossain, Md Shahriar A.
    Luo, Bin
    Gentle, Ian
    Wang, Lianzhou
    Knibbe, Ruth
    Yamauchi, Yusuke
    NANOSCALE, 2021, 13 (25) : 11086 - 11092
  • [29] Sulfur Immobilization by "Chemical Anchor" to Suppress the Diffusion of Polysulfides in Lithium-Sulfur Batteries
    Zeng, Zhipeng
    Liu, Xingbo
    ADVANCED MATERIALS INTERFACES, 2018, 5 (04):
  • [30] An ultra-durable gel electrolyte stabilizing ion deposition and trapping polysulfides for lithium-sulfur batteries
    Ding, Chenfeng
    Huang, Lingbo
    Guo, Yiran
    Lan, Jin-le
    Yu, Yunhua
    Fu, Xuewei
    Zhong, Wei-Hong
    Yang, Xiaoping
    ENERGY STORAGE MATERIALS, 2020, 27 : 25 - 34