NASICON-Structured Materials for Energy Storage

被引:483
作者
Jian, Zelang [1 ,2 ]
Hu, Yong-Sheng [3 ]
Ji, Xiulei [2 ]
Chen, Wen [1 ]
机构
[1] Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Sch Mat Sci & Engn, Wuhan 430070, Peoples R China
[2] Oregon State Univ, Dept Chem, Gilbert Hall 153, Corvallis, OR 97331 USA
[3] Chinese Acad Sci, Key Lab Renewable Energy, Beijing Key Lab New Energy Mat & Devices, Beijing Natl Lab Condensed Matter Phys,Inst Phys, Beijing 100190, Peoples R China
基金
美国国家科学基金会;
关键词
batteries; electrode materials; energy storage; NASICON; solid-state electrolytes; LITHIUM-ION BATTERIES; CARBON-COATED NA3V2(PO4)(3); RATE CATHODE MATERIAL; LI3V2(PO4)(3)/CARBON COMPOSITE-MATERIAL; SUPERIOR ELECTROCHEMICAL PERFORMANCE; POSITIVE-ELECTRODE MATERIALS; GLASS-CERAMIC ELECTROLYTES; STATE SYNTHESIS ROUTINE; X-RAY-DIFFRACTION; SOL-GEL METHOD;
D O I
10.1002/adma.201601925
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The demand for electrical energy storage (EES) is ever increasing, which calls for better batteries. NASICON-structured materials represent a family of important electrodes due to its superior ionic conductivity and stable structures. A wide range of materials have been considered, where both vanadium-based and titanium-based materials are recommended as being of great interest. NASICON-structured materials are suitable for both the cathode and the anode, where the operation potential can be easily tuned by the choice of transition metal and/or polyanion group in the structure. NASICON-structured materials also represent a class of solid electrolytes, which are widely employed in all-solid-state ion batteries, all-solid-state air batteries, and hybrid batteries. NASICON-structured materials are reviewed with a focus on both electrode materials and solid-state electrolytes.
引用
收藏
页数:16
相关论文
共 205 条
[1]   On the structure of Li3Ti2(PO4)3 [J].
Aatiq, A ;
Ménétrier, M ;
Croguennec, L ;
Suard, E ;
Delmas, C .
JOURNAL OF MATERIALS CHEMISTRY, 2002, 12 (10) :2971-2978
[2]   A wide-ranging review on Nasicon type materials [J].
Anantharamulu, N. ;
Rao, K. Koteswara ;
Rambabu, G. ;
Kumar, B. Vijaya ;
Radha, Velchuri ;
Vithal, M. .
JOURNAL OF MATERIALS SCIENCE, 2011, 46 (09) :2821-2837
[3]   IONIC-CONDUCTIVITY OF THE LITHIUM TITANIUM PHOSPHATE (LI1+XALXTI2-X(PO4)3), (LI1+XSCXTI2-X(PO4)3), (LI1+XYXTI2-X(PO4)3), (LI1+XLAXTI2-X(PO4)3 SYSTEMS [J].
AONO, H ;
SUGIMOTO, E ;
SADAOKA, Y ;
IMANAKA, N ;
ADACHI, GY .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1989, 136 (02) :590-591
[4]   ELECTRICAL-PROPERTIES AND CRYSTAL-STRUCTURE OF SOLID-ELECTROLYTE BASED ON LITHIUM HAFNIUM PHOSPHATE LIHF2(PO4)3 [J].
AONO, H ;
SUGIMOTO, E ;
SADAOKA, Y ;
IMANAKA, N ;
ADACHI, GY .
SOLID STATE IONICS, 1993, 62 (3-4) :309-316
[5]   IONIC-CONDUCTIVITY OF SOLID ELECTROLYTES BASED ON LITHIUM TITANIUM PHOSPHATE [J].
AONO, H ;
SUGIMOTO, E ;
SADAOKA, Y ;
IMANAKA, N ;
ADACHI, G .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1990, 137 (04) :1023-1027
[6]   Carbon coated nano-LiTi2(PO4)3 electrodes for non-aqueous hybrid supercapacitors [J].
Aravindan, V. ;
Chuiling, W. ;
Reddy, M. V. ;
Rao, G. V. Subba ;
Chowdari, B. V. R. ;
Madhavi, S. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2012, 14 (16) :5808-5814
[7]   Lithium mobility in titanium based Nasicon Li1+xTi2-xAlx(PO4)3 and LiTi2-xZrx(PO4)3 materials followed by NMR and impedance spectroscopy [J].
Arbi, K. ;
Rojo, J. M. ;
Sanz, J. .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2007, 27 (13-15) :4215-4218
[8]   High lithium ion conducting solid electrolytes based on NASICON Li1+xAlxM2-x(PO4)3 materials (M = Ti, Ge and 0 ≤ x ≤ 0.5) [J].
Arbi, K. ;
Bucheli, W. ;
Jimenez, R. ;
Sanz, J. .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2015, 35 (05) :1477-1484
[9]   Lithium mobility in Li1.2Ti1.8R0.2(PO4)3 compounds (R = Al, Ga, Sc, In) as followed by NMR and impedance spectroscopy [J].
Arbi, K ;
Lazarraga, MG ;
Chehimi, DB ;
Ayadi-Trabelsi, M ;
Rojo, JM ;
Sanz, J .
CHEMISTRY OF MATERIALS, 2004, 16 (02) :255-262
[10]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657