Histopathological Image Segmentation Using U-Net Based Models

被引:0
作者
Hatipoglu, Nuh [1 ]
Bilgin, Gokhan [2 ]
机构
[1] Idea Teknol Cozumleri, TR-34398 Istanbul, Turkey
[2] Yildiz Teknik Univ, Bilgisayar Muhendisli, TR-34220 Istanbul, Turkey
来源
TIP TEKNOLOJILERI KONGRESI (TIPTEKNO'21) | 2021年
关键词
Histopathological images; deep learning; U-Net architecture; segmentation; spatial relations in images;
D O I
10.1109/TIPTEKNO53239.2021.9632986
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Medical imaging plays an important role in clinical diagnosis, especially in treatment planning, surgery, and prognosis assessment. It is used to collect potentially life-saving information by looking at human organs without intervention through medical images. Automated segmentation methods can provide reliable diagnostic evidence for specialist physicians in preventive treatment decisions. In this study, different UNet based neural network architectures are investigated for segmentation of histopathological images taken from different organs. The dataset with 19 different organs discussed in the study is segmented using different neural network architectures based on U-Net. As a result of the experiments, the segmentation performances of the architectures are compared and thus a preliminary assessment of real-world problems is carried out.
引用
收藏
页数:4
相关论文
共 17 条
[1]  
[Anonymous], 2018, 2018 INN INT SYST
[2]   Deep Machine Learning-A New Frontier in Artificial Intelligence Research [J].
Arel, Itamar ;
Rose, Derek C. ;
Karnowski, Thomas P. .
IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2010, 5 (04) :13-18
[3]  
Bahdanau D, 2016, Arxiv, DOI arXiv:1409.0473
[4]  
Gamper Jevgenij, 2019, Digital Pathology. 15th European Congress, ECDP 2019. Proceedings: Lecture Notes in Computer Science (LNCS 11435), P11, DOI 10.1007/978-3-030-23937-4_2
[5]  
Gamper J, 2020, Arxiv, DOI [arXiv:2003.10778, 10.48550/arXiv:2003.10778, DOI 10.48550/ARXIV.2003.10778]
[6]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[7]   Deep learning [J].
LeCun, Yann ;
Bengio, Yoshua ;
Hinton, Geoffrey .
NATURE, 2015, 521 (7553) :436-444
[8]  
Li RR, 2019, Arxiv, DOI arXiv:1903.05558
[9]  
McInerney T, 1996, Med Image Anal, V1, P91, DOI 10.1016/S1361-8415(96)80007-7
[10]   Interrater Agreement for Final Infarct MRI Lesion Delineation [J].
Neumann, Anders B. ;
Jonsdottir, Kristjana Y. ;
Mouridsen, Kim ;
Hjort, Niels ;
Gyldensted, Carsten ;
Bizzi, Alberto ;
Fiehler, Jens ;
Gasparotti, Roberto ;
Gillard, Jonathan H. ;
Hermier, Marc ;
Kucinski, Thomas ;
Larsson, Elna-Marie ;
Sorensen, Leif ;
Ostergaard, Leif .
STROKE, 2009, 40 (12) :3768-3771