Interpretable Time-series Classification on Few-shot Samples

被引:11
|
作者
Tang, Wensi [1 ]
Liu, Lu [1 ]
Long, Guodong [1 ]
机构
[1] Univ Technol Sydney, FEIT, Ctr AI, Sydney, NSW, Australia
来源
2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN) | 2020年
关键词
time series classification; few-shot learning; interpretability;
D O I
10.1109/ijcnn48605.2020.9206860
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recent few-shot learning works focus on training a model with prior meta-knowledge to fast adapt to new tasks with unseen classes and samples. However, conventional time-series classification algorithms fail to tackle the few-shot scenario. Existing few-shot learning methods arc proposed to tackle image or text data, and most of them are neural based models that lack interpretability. This paper proposes an interpretable neural-based framework, namely Dual Prototypical Shapelet Networks (DPSN) for few-shot time-series classification, which not only trains a neural network-based model but also interprets the model from dual granularity: I) global overview using representative time series samples, and 2) local highlights using discriminative shapelets. In particular, the generated dual prototypical shapelets consist of representative samples that can mostly demonstrate the overall shapes of all samples in the class and discriminative partial-length shapelets that can be used to distinguish different classes. We have derived 18 few-shot TSC datasets from public benchmark datasets and evaluated the proposed method by comparing with baselines. The DPSN framework outperforms state-of-the-art time-series classification methods, especially when training with limited amounts of data. Several case studies have been given to demonstrate the interpret ability of our model.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] On the Importance of Distractors for Few-Shot Classification
    Das, Rajshekhar
    Wang, Yu-Xiong
    Moura, Jose M. F.
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 9010 - 9020
  • [32] Time-Series Few Shot Anomaly Detection for HVAC Systems
    Huang, Yuxin
    Coursey, Austin
    Quinones-Grueiro, Marcos
    Biswas, Gautam
    IFAC PAPERSONLINE, 2024, 58 (04): : 426 - 431
  • [33] Exploring Hard Samples in Multiview for Few-Shot Remote Sensing Scene Classification
    Jia, Yuyu
    Gao, Junyu
    Huang, Wei
    Yuan, Yuan
    Wang, Qi
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [34] Few-shot time series forecasting in a meta-learning framework
    Ma P.
    Ni Z.
    Ma, Ping (1533321767@qq.com), 1600, IOS Press BV (46): : 8903 - 8916
  • [35] A Time Series Forecasting Approach Based on Meta-Learning for Petroleum Production under Few-Shot Samples
    Xu, Zhichao
    Yu, Gaoming
    ENERGIES, 2024, 17 (08)
  • [36] Causal representation for few-shot text classification
    Yang, Maoqin
    Zhang, Xuejie
    Wang, Jin
    Zhou, Xiaobing
    APPLIED INTELLIGENCE, 2023, 53 (18) : 21422 - 21432
  • [37] Few-Shot Classification With Feature Reconstruction Bias
    Li, Zhen
    Wang, Lang
    Ding, Shuo
    Yang, Xiaochen
    Li, Xiaoxu
    PROCEEDINGS OF 2022 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2022, : 526 - 532
  • [38] Personalized federated few-shot node classification
    Yunfeng ZHAO
    Xintong HE
    Guoxian YU
    Jun WANG
    Yongqing ZHENG
    Carlotta DOMENICONI
    Science China(Information Sciences), 2025, 68 (01) : 204 - 218
  • [39] Few-Shot Learning Meets Transformer: Unified Query-Support Transformers for Few-Shot Classification
    Wang, Xixi
    Wang, Xiao
    Jiang, Bo
    Luo, Bin
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (12) : 7789 - 7802
  • [40] Few-Shot Classification with Semantic Augmented Activators
    Gao, Ruixuan
    Su, Han
    Tang, Peisen
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT VIII, 2024, 14432 : 340 - 352