Zero-free regions for multivariate Tutte polynomials (alias Potts-model partition functions) of graphs and matroids

被引:20
作者
Jackson, Bill [1 ]
Sokal, Alan D. [2 ,3 ]
机构
[1] Queen Mary Univ London, Sch Math Sci, London E1 4NS, England
[2] New York Univ, Dept Phys, New York, NY 10003 USA
[3] UCL, Dept Math, London WC1E 6BT, England
基金
美国国家科学基金会;
关键词
Graph; Matroid; Chromatic polynomial; Dichromatic polynomial; Flow polynomial; Characteristic polynomial; Tutte polynomial; Potts model; Chromatic root; Flow root; Zero-free interval; N-CONNECTED GRAPHS; RELIABILITY POLYNOMIALS; CHROMATIC ROOTS; ORIENTATIONS;
D O I
10.1016/j.jctb.2009.03.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The chromatic polynomial P(G)(q) of a loopless graph G is known to be non-zero (with explicitly known sign) on the intervals (-infinity, 0), (0,1) and (1, 32/27). Analogous theorems hold for the flow polynomial of bridgeless graphs and for the characteristic polynomial of loopless matroids. Here we exhibit all these results as special cases of more general theorems on real zero-free regions of the multivariate Tutte polynomial Z(G)(q, v). The proofs are quite simple, and employ deletion-contraction together with parallel and series reduction. In particular, they shed light on the origin of the curious number 32/27. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:869 / 903
页数:35
相关论文
共 38 条
[1]  
Birkhoff GD., 1912, Ann. Math, V14, P42, DOI [DOI 10.2307/1967597, 10.2307/1967597]
[2]   On chromatic roots of large subdivisions of graphs [J].
Brown, JI ;
Hickman, CA .
DISCRETE MATHEMATICS, 2002, 242 (1-3) :17-30
[3]   CRITICALLY N-CONNECTED GRAPHS [J].
CHARTRAND, G ;
LICK, DR ;
KAUGARS, A .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 32 (01) :63-+
[4]   A bibliography on chromatic polynomials [J].
Chia, GL .
DISCRETE MATHEMATICS, 1997, 172 (1-3) :175-191
[5]   FRACTAL STRUCTURE OF ZEROS IN HIERARCHICAL-MODELS [J].
DERRIDA, B ;
DESEZE, L ;
ITZYKSON, C .
JOURNAL OF STATISTICAL PHYSICS, 1983, 33 (03) :559-569
[6]   The zero-free intervals for characteristic polynomials of matroids [J].
Edwards, H ;
Hierons, R ;
Jackson, B .
COMBINATORICS PROBABILITY & COMPUTING, 1998, 7 (02) :153-165
[7]   GENERALIZATION OF THE FORTUIN-KASTELEYN-SWENDSEN-WANG REPRESENTATION AND MONTE-CARLO ALGORITHM [J].
EDWARDS, RG ;
SOKAL, AD .
PHYSICAL REVIEW D, 1988, 38 (06) :2009-2012
[8]   CONTRACTILE EDGES IN N-CONNECTED GRAPHS WITH MINIMUM DEGREE GREATER THAN OR EQUAL TO [5N/4] [J].
EGAWA, Y .
GRAPHS AND COMBINATORICS, 1991, 7 (01) :15-21
[9]   RANDOM-CLUSTER MODEL .1. INTRODUCTION AND RELATION TO OTHER MODELS [J].
FORTUIN, CM ;
KASTELEYN, PW .
PHYSICA, 1972, 57 (04) :536-+
[10]   Sinks in acyclic orientations of graphs [J].
Gebhard, DD ;
Sagan, BE .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2000, 80 (01) :130-146