Synergistic Effect of High-Frequency Ultrasound with Cupric Oxide Catalyst Resulting in a Selectivity Switch in Glucose Oxidation under Argon

被引:101
作者
Arnaniampong, Prince N. [1 ]
Quang Thang Trinh [2 ,3 ]
Vigier, Karine De Oliveira [4 ]
Duy Quang Dao [3 ]
Ngoc Han Tran [5 ]
Wang, Yingqiao [6 ]
Sherburne, Matthew P. [6 ,7 ]
Jerome, Francois [2 ,4 ]
机构
[1] CNRS Res Federat INCREASE, 1 Rue Marcel Dore,TSA 41105, F-86073 Poitiers, France
[2] Cambridge Ctr Adv Res & Educ Singapore CARES, Campus Res Excellence & Technol Enterprise CREATE, Singapore 138602, Singapore
[3] Duy Tan Univ, Inst Res & Dev, 03 Quang Trung, Danang 550000, Vietnam
[4] Univ Poitiers, IC2MP, CNRS, 1 Rue Marcel Dore,TSA 41105, F-86073 Poitiers, France
[5] Natl Univ Singapore, NUS Environm Res Inst, 5A Engn Dr 1,T Lab Bldg, Singapore 117411, Singapore
[6] Univ Calif Berkeley, Mat Sci & Engn Dept, Berkeley, CA 94720 USA
[7] Singapore Berkeley Res Initiat Sustainable Energy, BEARS, 1 Create Way, Singapore 138602, Singapore
基金
新加坡国家研究基金会;
关键词
BOND ACTIVATION; CELLOBIOSE; SURFACE; COPPER; OXYGEN; GOLD; ACID; NANOPARTICLES; EFFICIENCY; KINETICS;
D O I
10.1021/jacs.9b06824
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report here, and rationalize, a synergistic effect between a non-noble metal oxide catalyst (CuO) and high-frequency ultrasound (HFUS) on glucose oxidation. While CuO and HFUS are able to independently oxidize glucose to gluconic acid, the combination of CuO with HFUS led to a dramatic change of the reaction selectivity, with glucuronic acid being formed as the major product. By means of density functional theory (DFT) calculations, we show that, under ultrasonic irradiation of water at 550 kHz, the surface lattice oxygen of a CuO catalyst traps IA- radicals stemming from the sonolysis of water, making the ring-opening of glucose energetically unfavorable and leaving a high coverage of center dot OH radical on the CuO surface, which selectively oxidizes glucose to glucuronic acid. This work also points toward a path to optimize the size of the catalyst particle for an ultrasonic frequency that minimizes the damage to the catalyst, resulting in its successful reuse.
引用
收藏
页码:14772 / 14779
页数:8
相关论文
共 53 条
[11]   Influence of Hubbard U Parameter in Simulating Adsorption and Reactivity on CuO: Combined Theoretical and Experimental Study [J].
Bhola, Kartavya ;
Varghese, Jithin John ;
Liu Dapeng ;
Liu, Yan ;
Mushrif, Samir H. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (39) :21343-21353
[12]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[13]   Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study [J].
Dudarev, SL ;
Botton, GA ;
Savrasov, SY ;
Humphreys, CJ ;
Sutton, AP .
PHYSICAL REVIEW B, 1998, 57 (03) :1505-1509
[14]  
Fel'dman D., 1983, PHARM CHEM J, V17, P134
[15]   Kinetics of Radical-Molecule Reactions in Aqueous Solution: A Benchmark Study of the Performance of Density Functional Methods [J].
Galano, Annia ;
Alvarez-Idaboy, Juan Raul .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2014, 35 (28) :2019-2026
[16]   Density functional theory with London dispersion corrections [J].
Grimme, Stefan .
WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2011, 1 (02) :211-228
[17]   A climbing image nudged elastic band method for finding saddle points and minimum energy paths [J].
Henkelman, G ;
Uberuaga, BP ;
Jónsson, H .
JOURNAL OF CHEMICAL PHYSICS, 2000, 113 (22) :9901-9904
[18]   Effects on Electronic Properties of Molecule Adsorption on CuO Surfaces and Nanowires [J].
Hu, Jun ;
Li, Dongdong ;
Lu, Jia G. ;
Wu, Ruqian .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (40) :17120-17126
[19]   A standard method to calibrate sonochemical efficiency of an individual reaction system [J].
Koda, S ;
Kimura, T ;
Kondo, T ;
Mitome, H .
ULTRASONICS SONOCHEMISTRY, 2003, 10 (03) :149-156
[20]   ABINITIO MOLECULAR-DYNAMICS FOR LIQUID-METALS [J].
KRESSE, G ;
HAFNER, J .
PHYSICAL REVIEW B, 1993, 47 (01) :558-561